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Selection of Ground Motion Prediction Equations (GMPEs) within the Seismic 
Hazard Analysis (SHA) is an important and timely research line of inquiry. A set of 
22 regional and worldwide GMPEs have been selected in this research for the 
purpose of classification. They are classified into clusters in which each cluster is 
defined to have the most dissimilarity with the other clusters as well as having the 
most similarity within the cluster. The C-mean clustering algorithm is modified and 
adapted in order to be applicable in the current study. In addition, six groups are 
defined for different focal mechanisms and soil types. Then, the GMPE clustering 
is performed for each group and the obtained clusters are proposed and discussed. 
The results confirm that the obtained spectral ordinated from GMPEs of different 
clusters can meaningfully differed from each other. 

 

 

1. Introduction 

Ground Motion Prediction Equation (GMPE) is 
the key element within any seismic hazard analysis 
(SHA). Different GMPEs have been revised by 
enrichment of earthquake catalogues in which a 
wide variety of GMPEs are now available [1-2]. 
However, any GMPE depends strongly on the 
selected ground motion database. In other words, 
employing non-local GMPEs may be a challenging 
task [3]. Additionally, selection of a suitable 
GMPE is usually performed without enough 
attention to the compatibility of the chosen GMPE 
on historical site database. Therefore, the selection 
of appropriate GMPEs for regions, which suffer 
from the lack of available GMPEs, is usually a 
serious challenge. Therefore, the fuzzy C-mean 
clustering approach [4] is adapted and employed  
in this study in order to classify the available   
well-known GMPEs into different clusters. A set 

of models can be divided into a number of subsets, 
i.e. clusters [4], in which each cluster members 
have the most dissimilarity with the other cluster 
members and having the most similarity within the 
given cluster [5].  

Clustering approaches are categorized into the 
hard and soft clusters. In hard clustering approach, 
each data is assigned to only a specific cluster 
whereas in the soft (fuzzy) clustering approach 
each data has a certain membership value for each 
cluster [5]. Additionally, fuzzy clustering approach 
does not employ any category label that is a unique 
characteristic in this sort of approaches [6]. In 
other words, in contradiction of the classification 
in which the given data are classified into pre-
defined classes, clusters are not defined in priori in 
fuzzy clustering approach. Therefore, fuzzy 
clustering approach is a sort of un-supervised 
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classification [5], which makes it suitable for the 
purpose of the current study. It is worth 
mentioning that the idea of GMPE clustering is a 
novel approach in which this study is the first 
attempt in this issue.  

The fuzzy clustering approach is introduced in 
the upcoming section. Then, the fuzzy C-mean 
clustering approach is adapted in order to be 
applicable in the case of GMPE clustering. A set of 
22 GMPE’s are introduced later and employed 
within the adaptive fuzzy C-mean clustering in 
order to obtain different clusters. A validity 
measure for the number of clusters is discussed and 
the best number is chosen. Finally, the spectral 
accelerations based on different clusters are 
obtained and discussed. 

 
2. Fuzzy Clustering 

The concept of fuzzy clustering, in order to 
construct a set of unknown border clusters, has 
been proposed first by Zadeh [7]. Each data in 
clustering process is assigned to a cluster by           
a membership value based on the following 
criteria: 
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where N, C and uij are, respectively, number of data, 
number of clusters and membership value of the jth 
data for the ith cluster. According to Eqs. (1) and (2), 
each data gets a membership value between 0 and 1 
in the case of each cluster. Hence, the summation of 
all membership values for a specific data is equal to 
unity. Eq. (3) guarantees that there will not be a null 
cluster among all clusters [5]. 

The Fuzzy C-Mean (FCM) clustering is one of 
the most popular methods within the fuzzy 
clustering methods. As proposed by Bezdek in 
1981 [8], a centre point is assigned to each cluster 
in which the distance of each data from this point 

is defined as the corresponding membership value. 
The membership value is closer to unity for the 
cases that the given data is close enough to the 
centre point [8]. It is worth noting that the final 
clustering depends only on the data distribution 
and is independent of the cluster centres. In other 
words, after defining the number of clusters, the 
cluster centres as well as the membership values 
are calculated without any influence of the user. 
This characteristic is the most important scheme of 
the FCM approach, which makes it suitable for the 
current study. On the other hand, some 
modifications of the original version of the FCM 
are necessary in order to be applicable in the 
GMPEs clustering. These modifications are 
mandatory since each GMPE has its own input 
variables that may be different with the other 
models. Additionally, for a specific physical 
phenomenon, e.g. distance, different definitions are 
available in the literature. Therefore, the next 
section is discussed on the details of the adapted 
FCM clustering approach in the current study. 

 

3. Adapted Fuzzy C-Mean Clustering 
Algorithm 

In order to define different GMPEs, SA matrix 
is introduced here as written in Eq. (4). 
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(4) 

where Sa1 to SaN are spectral acceleration obtained 
from N (given) GMPEs. Mw, T, RJB, VS30, α , h, λ  
are, respectively, moment magnitude, period, 
horizontal distance to the surface projection of the 
rupture (Joyner-Boore distance), time-averaged 
shear-wave velocity over the top 30 meters           
of the subsurface, source-to-site azimuth,         
hypo-central depth, rake angle. Moreover,            
SaN 30( , , , , , , )n n n n n n n

W JB SM T R V hα λ  is the spectral 
acceleration corresponding to Nth model which has 
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been calculated by using the following values: 
30, , , , ,n n n n n n

W JB SM T R V hα and λn. 
Now a SA matrix is in hand, by using Eq. (4), in 

which each row corresponds to a specific GMPE 
and each column corresponds to a specific input 
variable for different models. It is worth 
emphasizing that RJB is selected in all models for 
the distance variable. Other definitions for the 
distance variable are transformed to the RJB 
definition by employing the transformation 
relationships [9]. The transformation relationships 
are also used to transform all the models outputs to 
the geometric mean of the two horizontal 
components [10]. In the case that a specific 
variable value is not valid for the defined range    
of a given GMPE, Not a Number (NaN) is placed 
in the corresponding cell in the SA matrix. It  
means that in the case of that cell, there is no value 
for the specific model.  

The adapted FCM clustering algorithm, which 
has been employed in the current study, is 
introduced as the following steps: 
• After defining the number of clusters, the 

membership matrix is randomly calculated as 
written in Eq. (5). 
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where uCN is the membership value of Nth data for 
Cth cluster centre. 
• Eq. (4) is re-written as Eq. (6) for the purpose 

of simplicity. The cluster centres is calculated 
by using Eq. (7). As some of the cells in the SA 
matrix is NaN, the corresponding is set to zero 
when using Eq. (7). Additionally, in the case of   
in Eq. (7), the membership value corresponding 
to NaN case is also set to zero. 
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• The similarity is defined in this step as the 
Manhattan distance [5], which is written in    
Eq. (8). 
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here ),( cNManw CSaD  is the distance of Nth model 
with Cth cluster. When either i

NSa  or i
CC  in Eq. (8) 

is NaN, then, wi is set to zero. Otherwise wi is set 
to unity. Therefore, the similarity matrix is 
calculated as written in Eq. (9). 
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where NC×  cell in the matrix corresponds to the 
distance between Nth model with Cth cluster centre. 
The objective function is defined as the sum of the 
distances as written in Eq. (10).  

2

1 1

2

1 1

( , ) ( , ) 

       1 ,

N C
m

FCM ij Manw j i
j i

N C
m
ij ij

j i

J U C u D Sa C

u D m

= =

= =

= ⋅

= ⋅ <

∑∑

∑∑
     

(10)

where Dij corresponds to the ith row by jth column 
in D matrix.  

As the U matrix is calculated randomly, it 
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should be corrected in an iterative process by the 
goal of minimization of the objective function. 
This is achieved by updating the U matrix by 
employing Eq. (11). The old U matrix, then, is 
replaced with the new U matrix and all the steps 
are repeated. This iteration process is repeated until 
the difference between the objective function with 
the previous objective function becomes less than a 
predefined tolerance, i.e. 10-5 in the current study. 
The mathematical form of the stopping criterion is 
written in Eq. (12). 
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where ( )JFCMJ  and ( ) 1−JFCMJ  are, respectively,  

corresponding to the objective functions of Jth and 
(J-1)th iteration.  
    The GMPEs are clustered into a certain number 
based on their prediction capability of the spectral 
values. Each given GMPE has a membership value 
for each cluster. In addition, each cluster centre is 
accounted as the representative of the corresponding 
cluster. To clarify, three simple constant functions 
with different domains, as seen in Figure (1), are 
examined with the proposed clustering algorithm. 
The proposed FCM clustering algorithm has been 
applied to the given functions in order to produce 
two clusters. The results are shown in Figure (1) in 
which four different regions are distinguished. The 
following characteristics are discussed based on 
Figure (1). 
• At the first region, only one function is defined. 

Hence, all the clusters centres are identical with 
the defined function. 

• At the second region, the function y2=0 has 
NaN values. Therefore, the clusters centres are 
identical with the other functions. 

• At the third region, the y2=0 function has 
numeric values, in contrast to the previous 
region. Hence, the clusters centres are closer to 
this function compared with the previous case. 

 

 
Figure 1. Performance of the proposed FCM clustering algorithm. (a) Introduction of three hypothetical functions y1, 

y2, y3. (b) Clustering of the three hypothetical functions into two clusters using the proposed FCM 
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clustering algorithm. 
 
 
 

• At the forth region, all the functions have NaN 
values. This results in NaN in cluster centres.  

    The behaviour that is discussed in the four 
regions confirms that this adapted FCM algorithm 
is suitable to be applied to a set of GMPEs which 
is discussed in the following section.  
 
4. Fuzzy Clustering of GMPEs 

A wide variety of GMPEs are selected from 
1997 to 2012 [2] that include 22 worldwide and 
regional models. Three different limitations are 
taken into consideration in the model selection as 
the followings: 
1. The transformation relationships [9-10] should 

be applicable to any of the selected GMPE. 
2. All the models use the moment magnitude as 

one of the inputs. Any model which uses other 
magnitude definition is eliminated. The only 
exception is Ghodrati et al [11] which is one of 
the Iranian well-known models. Ghodrati et al 
[11] model uses surface magnitude which was 
transformed into the moment magnitude by 
employing the transformation relationships [1]. 

3. Any GMPE corresponding to the near-field 
region is eliminated. 
By considering the three above criteria, 22 

models were selected which are shown in Table 1. 
Each model and the corresponding input variables 
are shown in Table (1). It is worth noting that 
NGA-WEST2 models were not available in the 
time of the current research. Therefore, these new 
models are left for future researches. 

 
Table 1. Selected GMPEs with the range of input parameters. 

Ref. Definitions of Horizontal 
Component of Motion λ  Depth 

(km) 
VS30 
(m/s) 

Distance
(km) Mw Model No. 

Worldwide Shallow Crustal 
[12] GMRotI50a -90°, 0°, 90°2-31 180-1300 0-200 5-8 Boore & Atkinson 08 (Crustal) 1 
[13] GMRotI50 -90°, 0°, 90°0-30 150-1500 0-200 4-8.5 Campbell & Bozorgnia 08 (Crustal) 2 
[14] GMRotI50 -90°, 0°, 90°0-30 0-1000 0-200 5-8.5 Abrahamson & Silva 08 (Crustal) 3 
[15] GMRotI50 -90°, 0°, 90°0-19 150-1500 0-200 4-8.5 Chiou & Youngs 08 (Crustal) 4 
[16] AMxyb -90°, 0°, 90°0-30 450-900 0-200 4.5-7.7 Idriss 08 (Crustal) 5 

Worldwide 
[17] GMc -90°, 0°, 90°0-10.13 200-1500 0.1-200 5.6-7.9 Kuehn 09 6 

European & Middle East 
[18] Envxyd -90°, 0°, 90°1-30 180-1000 0-100 5-7.6 Ambraseys 05 7 
[19] GM -90°, 0°, 90°0-30 0-1000 0-100 5-7.6 Akkar & Bommer 10 8 

Italy 
[20] Envxy -90°, 0°, 90°1.5-30 180-1000 1-100 4-6.9 Bindi 10 9 

Japan 
[21] GM -90°, 0°, 90°0-25 0-1000 0-300 5-8.3 Zhao 06 (Crustal) 10 
[21] GM -90°, 0°, 90°10-50 0-1000 0-300 5-8.3 Zhao 06 (Interface) 11 

Turkey 
[22] Envxy -90°, 0°, 90°0-111 200,400,700 0-250 4-7.5 Kalkan & Gulkan 04 12 
[23] GM -90°, 0 5-25 0-1000 5-300 5-7.4 Ozbey 04 13 
[24] GM -90°, 0°, 90°0-50 180-1000 0-200 5-7.6 Akkar & Cagnan 10 14 

Iran 
[25] GMRotI50 -90°, 0°, 90°5-22 0-1000 0.5-100 5-7.4 Ghasemi 09 15 
[11] Envxy -90°, 0°, 90°5-59 0-1000 5-200 4-7.7 Ghodrati 10 (Alborz) 16 
[11] Envxy -90°, 0°, 90°5-59 0-1000 5-200 4-7.7 Ghodrati 10 (Zagros) 17 
[26] GMRotI50 0°, 90° 7-27 175-1000 15-135 5-7.3 Saffari 12 (Central Iran) 18 
[26] GMRotI50 0°, 90° 7-27 175-1000 15-135 5-6.5 Saffari 12 (Zagros) 19 
[27] GM -90°, 0°, 90°0-30 175-1000 1-200 4.4-7.5 Zafarani 12( Zagros) 20 

Himalaya 
[28] GM 0°, 90° 5-50 0-1000 0-100 5-7 Sharma 09 21 

Eurasia 
[29] Bothe 0° 3-30 0-1000 0.5-235 5.5-7.4 Fukushima 03 22 

 

a: The geometric mean determined from the 50th percentile values of the geometric means computed for all non-redundant rotation angles and all periods 
less than the maximum useable period. 
b: Arithmetic mean of spectra of x and y components 
c: Geometric mean of spectra of x and y components 
d: Envelope of x and y spectra: At each period the maximum spectral ordinate from all possible orientations of the horizontal axis is chosen. This is the 
common understanding of the “larger component” definition. 
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e: Both horizontal components of a record are considered and treated as two independent realizations of a random process. This definition was used, in 
particular, when ground-motion data were still very sparse. 

The input variables ranges are defined as shown 
in Table (2) for Mw, T, RJB, VS30, α , h and λ . The 
authors tried to create a balance between the ranges 
of the considered input variables with the 
computational efforts of the clustering algorithm. 
The input SA matrix dimension is 22 x 179928 
that reveals the serious difficulties in the 
computational aspects of the current research. 

 
Table 2. Introduction of the range of input variables. 

Range Parameters 
M=4:0.25:8 Moment Magnitude 

⎥
⎦

⎤
⎢
⎣

⎡
=

275151251019080
70605040302010

......
.......

T  Period (s) 

Rjb=25:25:150; Distance (km) 
Vs=[175 275 375]; 
Vs=[400 550 700];

Shear-Wave Velocity 
(m/s) 

}180 ,120 ,60 ,0,60 ,120 ,180{ ooooooo −−−=αAzimuth (Degree) 
h= 5:5:30Focal Depth (Km) 
{ }ooo 90 ,0 ,90−=λRake Angle (Degree) 

 
Two soil types are defined in this study, i.e. 

Soft soil is corresponding to 175<Vs30<375 and 
the firm soil is corresponding to 400<Vs30<700. 

Additionally, three different fault mechanisms are 
taken into consideration, i.e. normal ( 90−=λ ), 
strike-slip ( 0=λ ) and reverse ( 90+=λ ). Therefore, 
six combinations of the soil type and fault 
mechanism are available in order to classify the 
considered GMPEs. The number of GMPEs in 
each combination (group) is illustrated in Table (3).  

The next step in the clustering algorithm is the 
decision on the number of clusters which is a 
challenging task. Therefore, the number of clusters 
was varied between 2 to GMPEN  achieve the best 
choice in which GMPEN  is the number of GMPEs 
within a given group. For this purpose, the validity 
index (VXB) has been used as written in Eq. (13) [30]. 
The result of this index is shown in Table (4). It is 
worth noting that high values, in Table (4), are 
corresponding to the better validity indices. Hence, it 
is concluded that three clusters in the case of Group 
No. 1, five clusters in the cases of Groups Nos. 2, 3, 4 
and 5, and four clusters in the case of Group No. 6 
are appropriate in the current study.   
 

Table 3. The avCrustalailable GMPEs in each group. 
Case 6 Case 5 Case 4 Case 3 Case 2 Case 1 NO 

   Model    
Boore & Atkinson 

08 (Crustal) 
Boore & Atkinson 

08 (Crustal) 
Boore & Atkinson 

08 (Crustal) 
Boore & Atkinson 

08 (Crustal) 
Boore & Atkinson 

08 (Crustal) 
Boore & Atkinson 

08 (Crustal) 1 

Campbell & 
Bozorgnia 08 

(Crustal) 

Campbell & 
Bozorgnia 08 

(Crustal) 

Campbell & 
Bozorgnia 08 

(Crustal) 

Campbell & 
Bozorgnia 08 

(Crustal) 

Campbell & 
Bozorgnia 08 

(Crustal) 

Campbell & 
Bozorgnia 08 

(Crustal) 
2 

Abrahamson & Silva 
08 (Crustal) 

Abrahamson & Silva 
08 (Crustal) 

Abrahamson & Silva 
08 (Crustal) 

Abrahamson & Silva 
08 (Crustal) 

Abrahamson & Silva 
08 (Crustal) 

Abrahamson & Silva 
08 (Crustal) 3 

Chiou & Youngs 08 
(Crustal) 

Chiou & Youngs 08 
(Crustal) 

Chiou & Youngs 08 
(Crustal) 

Chiou & Youngs 08 
(Crustal) 

Chiou & Youngs 08 
(Crustal) 

Chiou & Youngs 08 
(Crustal) 4 

Idriss 08 (Crustal) Idriss 08 (Crustal) Idriss 08 (Crustal) - - - 5 
Kuehn 09 Kuehn 09 Kuehn 09 Kuehn 09 Kuehn 09 Kuehn 09 6 

Ambraseys 05 Ambraseys 05 Ambraseys 05 Ambraseys 05 Ambraseys 05 Ambraseys 05 7 
Akkar & Bommer 

10 
Akkar & Bommer 

10 
Akkar & Bommer 

10 
Akkar & Bommer 

10 
Akkar & Bommer 

10 
Akkar & Bommer 

10 8 

Bindi 10 Bindi 10 Bindi 10 Bindi 10 Bindi 10 Bindi 10 9 
Zhao 06 (Crustal) Zhao 06 (Crustal) Zhao 06 (Crustal) Zhao 06 (Crustal) Zhao 06 (Crustal) Zhao 06 (Crustal) 10 

Zhao 06 (interface) Zhao 06 (interface) Zhao 06 (interface) Zhao 06 (interface) Zhao 06 (interface) Zhao 06 (interface) 11 
Kalkan & Gulkan 04Kalkan & Gulkan 04 Kalkan & Gulkan 04Kalkan & Gulkan 04Kalkan & Gulkan 04 Kalkan & Gulkan 04 12 

- Ozbey 04 Ozbey 04 - Ozbey 04 Ozbey 04 13 
Akkar & Cagnan 10 Akkar & Cagnan 10 Akkar & Cagnan 10 Akkar & Cagnan 10 Akkar & Cagnan 10 Akkar & Cagnan 10 14 

Ghasemi 09 Ghasemi 09 Ghasemi 09 Ghasemi 09 Ghasemi 09 Ghasemi 09 15 
Ghodrati 10 (Alborz)Ghodrati 10 (Alborz) Ghodrati 10 (Alborz)Ghodrati 10 (Alborz)Ghodrati 10 (Alborz) Ghodrati 10 (Alborz) 16 
Ghodrati 10 (Zagros)Ghodrati 10 (Zagros) Ghodrati 10 (Zagros)Ghodrati 10 (Zagros)Ghodrati 10 (Zagros) Ghodrati 10 (Zagros) 17 
Saffari 12 (Central 

Iran) 
Saffari 12 (Central 

Iran) - Saffari 12 (Central 
Iran) 

Saffari 12 (Central 
Iran) - 18 

Saffari 12 (Zagros) Saffari 12 (Zagros) - Saffari 12 (Zagros) Saffari 12 (Zagros) - 19 
Zafarani 12 (Zagros)Zafarani 12 (Zagros) Zafarani 12 (Zagros)Zafarani 12 (Zagros)Zafarani 12 (Zagros) Zafarani 12 (Zagros) 20 

Sharma 09 Sharma 09 - Sharma 09 Sharma 09 - 21 
- Fukushima 03 - - Fukushima 03 - 22 
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The total number of attenuation models in each case. 
20 22 18 19 21 17  

Table 4. Xie and Beni index to evaluate the validity of 
clusters. 

Case 6 Case 5 Case 4 Case 3 Case 2 Case 1 
The 

Number of 
Clusters (N) 

0.2761 0.2629 0.2662 0.3082 0.3260 0.2827 N=2 

0.2595 0.2864 0.1739 0.4778 0.3636 0.1815 N=3 

0.1346 0.2353 0.1651 0.2957 0.3759 0.2790 N=4 

0.2546 0.1014 0.1576 0.2376 0.1255 0.2206 N=5 

 
The clustering results in each group are shown 

through Table (5) to Table (10) as the main result 
of the modified C-mean clustering algorithm. Each 
table illustrates the clusters GMPEs as well as the 
membership values for a given group. 

2      1
min

FCM
XB

i j

J
V i j C

N C C
= ≤ < ≤

−
 (13)

To more elaborate with the obtained clusters, 
each cluster centre is taken as the representative of 
that cluster. For example, different cluster centres 
in the case of group No. 1 are shown in Figure (2) 
versus period. The third cluster is remarkably 
different with the other cluster centres as seen in 
Figure (2). These clustering results are applicable 
to a given seismic data in a specific region. The 
observed data are comparable with the cluster 
centres in order to find the best fitted cluster to be 
used in PSHA. 

 
Table 5. Clustering of 17 models in case 1. 

Number of Clusters = 3 
U Attenuation Relationship No 

Cluster 1 
0.8992 Boore & Atkinson 08 (Crustal) 1 
0.4080 Campbell & Bozorgnia 08 (crustal) 2 
0.8583 Chiou & Youngs 08 (crustal) 4 
0.8829 Akkar & Bommer 10 8 
0.5701 Bindi 10 9 
0.4878 Kalkan & Gulkan 04 `12 
0.6414 Ozbey 04 13 
0.8516 Akkar & Cagnan 10 14 
0.7734 Ghodrati 10 (Alborz) 16 
0.8279 Ghodrati 10 (Zagros) 17 

Cluster 2  
0.4625 Ambraseys 05 7 

Cluster 3  
0.4579 Abrahamson & Silva 08 (crustal) 3 

0.9037 Kuehn 09 6 
0.5903 Zafarani 12 (Zagros) 20 

 
 

Table 6. Clustering of 21 models in case 2. 

Number of Clusters = 5 
U Attenuation Relationship No 

Cluster 1 
0.5269 Ozbey 04 13 
0.7068 Akkar & Cagnan 10 14 
0.6158 Ghodrati 10 (Alborz) 16 
0.8788 Ghodrati 10 (Zagros) 17 
0.7106 Sharma 09 21 

Cluster 2 
0.9705 Kuehn 09 6 
0.3945 Saffari 12 (Central Iran) 18 
0.3756 Saffari 12( Zagros) 19 
0.4616 Zafarani 12 (Zagros) 20 

Cluster 3 
0.9965 Abrahamson & Silva 08 (crustal) 3 

Cluster 4 
0.4769 Ambraseys 05 7 
0.5530 Bindi 10 9 
0.9274 Zhao 06 (crustal) 10 
0.9237 Zhao 06 (interface) 11 
0.4906 Ghasemi 09 15 

Cluster 5 
0.9066 Boore & Atkinson 08 (crustal) 1 
0.8813 Campbell & Bozorgnia 08 (crustal) 2 
0.5716 Chiou & Youngs 08 (crustal) 4 
0.5022 Akkar & Bommer 10 8 
0.7805 Kalkan & Gulkan 04 12 
0.6473 Fukushima 03 22 

 
Table 7. Clustering of 19 models in case 3. 

Number of Clusters = 5 
U Attenuation Relationship No 

Cluster 1 
0.4018 Akkar & Cagnan 10 14 
0.7572 Ghodrati 10 (Alborz) 16 
0.8748 Ghodrati 10 (Zagros) 17 

Cluster 2 
0.6242 Ambraseys 05 7 
0.5202 Bindi 10 9 
0.9211 Zhao 06 (interface) 11 
0.5975 Ghasemi 09 15 

Cluster 3 
0.9521 Zhao 06 (crustal) 10 
0.4389 Saffari 12 (Central Iran) 18 
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0.6736 Zafarani 12 (Zagros) 20 
Cluster 4 

0.9830 Abrahamson & Silva 08 (crustal) 3 
0.3300 Kuehn 09 6 

 

Table 7. Continue 

Cluster 5 
0.9024 Boore & Atkinson 08 (crustal) 1 
0.7637 Campbell & Bozorgnia 08 (crustal) 2 
0.7258 Chiou & Youngs 08 (crustal) 4 
0.4586 Akkar & Bommer 10 8 
0.6403 Kalkan & Gulkan 04 12 
0.3495 Saffari 12( Zagros) 19 
0.3887 Sharma 09 21 

 
 

Table 8. Clustering of 18 models in case 4. 

Number of Clusters = 5 
U Attenuation Relationship No 

Cluster 1 
0.9862 Kuehn 09 6 
0.3280 Ambraseys 05 7 
0.2860 Ghasemi 09 15 

Cluster 2 
0.9817 Abrahamson & Silva 08 (crustal) 3 
0.4140 Zafarani 12 (Zagros) 20 

Cluster 3 
0.5964 Bindi 10 9 
0.9624 Zhao 06 (crustal) 10 
0.9538 Zhao 06 (interface) 11 

Cluster 4 
0.5411 Ozbey 04 13 
0.6499 Akkar & Cagnan 10 14 
0.6564 Ghodrati 10 (Alborz) 16 
0.8738 Ghodrati 10 (Zagros) 17 

Cluster 5 
0.8759 Boore & Atkinson 08 (crustal) 1 
0.8199 Campbell & Bozorgnia 08 (crustal) 2 
0.6577 Chiou & Youngs 08 (crustal) 4 
0.4999 Idriss 08 (crustal) 5 
0.7499 Akkar & Bommer 10 8 
0.4901 Kalkan & Gulkan 04 12 

 
 

Table 9. Clustering of 22 models in case 5. 

Number of Clusters = 5 
U Attenuation Relationship No 

Cluster 1 
0.9504 Kuehn 09 6 
0.3331 Ghasemi 09 15 
0.5310 Saffari 12( Zagros) 19 
0.3772 Zafarani 12 (Zagros) 20 

0.4314 Fukushima 03 22 
Cluster 2 

0.3503 Ambraseys 05 7 
0.7015 Bindi 10 9 

 

Table 9. Continue 

0.9463 Zhao 06 (crustal) 10 
0.9325 Zhao 06 (interface) 11 
0.3076 Saffari 12 (Central Iran) 18 

Cluster 3 
0.9869 Abrahamson & Silva 08 (crustal) 3 

Cluster 4 
0.6434 Ozbey 04 13 
0.7039 Akkar & Cagnan 10 14 
0.7309 Ghodrati 10 (Alborz) 16 
0.8549 Ghodrati 10 (Zagros) 17 
0.6033 Sharma 09 21 

Cluster 5 
0.9220 Boore & Atkinson 08 (crustal) 1 
0.9143 Campbell & Bozorgnia 08 (crustal) 2 
0.5657 Chiou & Youngs 08 (crustal) 4 
0.5985 Idriss 08 (crustal) 5 
0.7258 Akkar & Bommer 10 8 
0.7018 Kalkan & Gulkan 04 12 

 
 

Table 10. Clustering of 20 models in case 6. 

Number of Clusters = 5 
U Attenuation Relationship No 

Cluster 1 
0.9237 Boore & Atkinson 08 (crustal) 1 
0.9173 Campbell & Bozorgnia 08 (crustal) 2 
0.8236 Chiou & Youngs 08 (crustal) 4 
0.5280 Idriss 08 (crustal) 5 
0.5694 Akkar & Bommer 10 8 
0.3637 Zhao 06 (interface) 11 
0.7229 Kalkan & Gulkan 04 12 
0.3605 Saffari 12( Zagros) 19 
0.3916 Sharma 09 21 

Cluster 2 
0.8826 Kuehn 09 6 
0.6741 Ambraseys 05 7 
0.3300 Bindi 10 9 
0.4589 Ghasemi 09 15 
0.4984 Saffari 12 (Central Iran) 18 

Cluster 3 
0.4235 Abrahamson & Silva 08 (crustal) 3 
0.9097 Zhao 06 (crustal) 10 
0.6570 Zafarani 12 (Zagros) 20 

Cluster 4 



Adaptive Fuzzy C-Mean Clustering of Ground Motion Prediction Equations 

JSEE / Vol. 19, No. 1, 2017                                                                                                                                  31  

0.4963 Akkar & Cagnan 10 14 
0.8794 Ghodrati 10 (Alborz) 16 

0.9012 Ghodrati 10 (Zagros) 17 
0.4963 Akkar & Cagnan 10 14 

 

 

Figure 2. Different cluster centres in the case of group No. 1 and MW = 6, RJB = 150km, VS30 = 375m/s, α = 180°, h = 
20m,      λ = -90°. 

 
5. Conclusions 

The GMPEs are widely used within any seismic 
hazard analysis. On the other hand, local GMPEs 
are not available in many regions. That is, a 
systematic clustering algorithm is employed in this 
study in order to join similar models in a same 
cluster. The adapted fuzzy c-mean clustering 
algorithm is utilized to obtain the final clusters 
since this method is only depends on the models 
variation and not on the models centres. Each 
model is assigned to a cluster by a certain 
membership value that is between 0 and 1. A high 
membership value shows significant dependence 
of the selected model to the obtained cluster.  

A set of 22 regional and worldwide GMPEs 
were selected in order to be clustered. Three 
different focal mechanisms and two soil types were 
defined in which six groups were organized. The 
clustering algorithm was performed for each group 
and the resulting clusters introduced. The Xie and 
Beni validity index was utilized in order to decide 
on the best number of clusters. The clusters can be 
employed in order to judge on applicability of 
GMPEs for a specific seismic region.  

It is worth mentioning that the obtained results 
are limited to the given assumptions in this study 
and further investigations are necessary in order to 
shed light to this area of research.  
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