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Abstract   Selection of an appropriate Ground Motion Prediction Equation (GMPE) is a 10 

key element within the Seismic Hazard Analysis (SHA). A new methodology is introduced 11 

in this paper in order to assess the stability of GMPEs. The proposed methodology is named 12 

Re-Sampling Analysis (RSA), in which it evaluates the sensitivity of GMPEs under a given 13 

subset of re-sampled data. The model bias is calculated, in the proposed methodology, on 14 

the basis of the statistical hypothesis tests for different residual components. Four Next 15 

Generation Attenuation (NGA) models were evaluated in order to investigate their stability 16 

by means of statistical RSA within their own databases. The case study results show that 17 

some of the considered GMPEs are quite sensitive to their own databases. Hence, the RSA 18 

methodology, as a stability criterion, has been proposed as a practical tool within the 19 

GMPE development and also as an effective and complementary tool for selection of the 20 

most appropriate GMPE within a SHA.  21 
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 25 

Introduction 26 

A reasonable prediction of the expected ground-motion parameters, such as Peak Ground 27 

Acceleration (PGA), Peak Ground Velocity (PGV), and Spectral Acceleration (SA), plays a 28 

fundamental role in the reliable assessment of seismic hazard. Ground Motion Prediction Equations 29 

(GMPEs) are the most important components that significantly affect the Probabilistic Seismic 30 

Hazard Analysis (PSHA) results. The growing quantity and quality of ground-motion information 31 

on recordings, in different databases, has resulted in numerous regional and worldwide GMPEs 32 

through recent decades (Douglas, 2011). However, it has been observed that different global 33 

GMPEs can result in quite different outputs for various tectonic regimes (Mousavi et al., 2012; 34 

Kaklamanos and Baise, 2011 and Shoja-Taheri et al., 2010). The sources of these differences are the 35 

considered database, the mathematical shape of GMPEs, the procedures considered for the 36 

development of GMPEs and the chosen input variables. The selection of an appropriate GMPE is 37 

one of the primary components of any SHA for a specific seismic region since there are many new 38 

emerged GMPEs in the literature (Toro, 2006).  39 

There are many statistical and mathematical methods to assess the compatibility between the 40 

observed and predicted data such as: chi-square test, Kolmogorov-Smirnov test, Error comparison 41 

tests (e.g. Root Mean Square Error (RMSE) and Mean Absolute Error (MAE)), Coefficient of 42 

determination, Nash-Sutcliffe efficiency coefficient, Variance reduction, aspect of bias, and other 43 

goodness-of-fit statistics. Furthermore, two different likelihood-based schemes, that are LH method 44 



3 

 

(Scherbaum et al., 2004) and LLH method (Scherbaum et al., 2009), were emerged in order to 45 

evaluate the GMPEs. LH method is a well-designed tool for ranking GMPEs which measures not 46 

only the model fitness, but also the primary statistical assumptions (Scherbaum et al., 2004). 47 

However, the dependence on the ad hoc assumptions is still a challenge. Therefore, the information-48 

theoretic method has been emerged to overcome the dependence of the results on the ad hoc 49 

assumptions e.g. sample size and significant thresholds (Scherbaum et al., 2009). In addition, these 50 

two likelihood-based methods, as well as other classical residual analysis methods, inspired the 51 

researchers to introduce the Euclidean Distance-Based Ranking (EDR) method by consideration of 52 

the ground-motion uncertainty and measuring the bias between the observed data and median 53 

estimations of GMPEs (Kale and Akkar, 2013).   54 

There are several comprehensive studies on selection and ranking the GMPEs based on a 55 

given set of candidate local and global GMPEs by means of the classical and modern methodologies 56 

(Bindi et al., 2006; Scassera et al., 2009; Shoja-Taheri et al., 2010; Kaklamanos and Baise, 2011; 57 

Mousavi et al., 2012). It is worth noting that the database was assumed to be fixed during these 58 

studies. However, the sensitivity of GMPE on the given Ground Motion Record (GMR) database 59 

still needs more investigation. Therefore, this study presents a new methodology for assessment of 60 

the stability of GMPEs based on a given database. The authors believe that this feature has been 61 

neglected while generating the predictive models. The proposed methodology, named Re-sampling 62 

Analysis (RSA), is based on the definition of a hypothesis test in order to estimate the existence of 63 

bias for the different types of residual components (i.e. inter-event residuals, intra-event residuals, 64 

and total residuals) versus different input parameters such as moment magnitude, source to site 65 

distance, and shear-wave velocity. In this paper, in order to show the applicable accomplishment of 66 

the RSA method, the Next Generation Attenuation (NGA) models (Power et al., 2008), which were 67 

developed in 2008, have been chosen and evaluated via RSA approach.   68 
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 69 

Summary of NGA GMPEs and their datasets 70 

In 2008, after five-years effort, the Pacific Earthquake Engineering Research (PEER) center’s 71 

Next Generation Attenuation (NGA) project released a new series of ground-motion prediction 72 

equations through a comprehensive research program for shallow crustal earthquakes in the Western 73 

North of America (Power et al., 2006). The NGA metadata information, that has been used to 74 

develop the NGA GMPEs, is relatively large (i.e. 3551 recordings from 173 earthquake events) in 75 

order to decrease the aleatory variability and also improve the estimation quality in the case of near-76 

source ground-motions. These GMPEs consist of Abrahamson and Silva (2008) (AS08), Boore and 77 

Atkinson (2008) (BA08), Campbell and Bozorgnia (2008) (CB08), Chiou and Youngs (2008) 78 

(CY08), and Idriss (2008) (I08). The NGA GMPEs are summarized in Table 1 including the validity 79 

range of the magnitude, distance measure, and shear-wave velocity. Note that I08 model only 80 

includes rock site (assumed to be sites with VS30  450 m/s) in which this significant difference 81 

isolates the Idriss model from the other models. Therefore, this model is excluded for further 82 

investigation in this paper.  83 

 84 

Table 1. Summary of the NGA GMPEs, indicating distance metric and conditions of use. 85 

 86 

As illustrated in Table 2, there is a set of comprehensive and different types of components to 87 

be employed within the NGA GMPEs (Kaklamanos et al., 2010). Accordingly, in this study, the 88 

result of Kaklamanos’s technical note has been used to determine unknown parameters of the NGA 89 

flatfile in order to reduce the uncertainties and convert all input variables of GMPEs into a unique 90 

definition (Kaklamanos et al., 2010 and 2011).  91 

 92 
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Table 2. Explanatory variables for implementation within the NGA GMPEs (Kaklamanos et al., 2010).  93 

 94 

The NGA GMPEs are known as global predictive models and the only constraint is that the 95 

study region should be tectonically active with shallow crustal earthquakes. Therefore, numbers of 96 

quantitative comparisons have been employed in order to examine GMPEs on the basis of different 97 

seismic regions and using recorded or synthetic data sets e.g. Ghasemi et al. (2009), Shoja-Taheri et 98 

al. (2010), and Mousavi et al. (2012) which evaluated the NGA GMPEs in the case of Iran seismic 99 

plateau database. Campbell and Bozorgnia (2006), Stafford et al. (2008), and Scasserra et al. (2009) 100 

compared the NGA GMPEs with local models for European database, and Graves et al. (2008), 101 

Olsen et al. (2008, 2009), Star et al. (2008, 2010, 2011), and Kaklamanos and Baise (2011) 102 

examined the NGA models for different databases in the California.  103 

In this study, the NGA GMPEs have been evaluated by means of the RSA method in order to 104 

assess their stability. Each GMPE was investigated based on its own database, which was 105 

implemented in the stage of GMPE development. According to this point, CB08, AS08, BA08, and 106 

CY08 models were examined, respectively, based on 1561 recordings from 64 earthquakes, 2754 107 

recordings from 135 earthquakes, 1574 recordings from 58 earthquakes, and 1950 recordings from 108 

125 earthquakes. Figure 1 shows the distribution of moment magnitude versus distance metric 109 

measures e.g. the closest distance to the rupture plane (RRUP) and the horizontal distance to the 110 

surface projection of the rupture (RJB) for the four NGA databases.  111 

 112 

Figure 1. Distribution of recordings with respect to the moment magnitude (Mw) and distance metric measures (RRUP, 113 

RJB) for the database which has been used in each NGA model, (a) CB08, (b) AS08, (c) BA08, and (d) CY08. 114 

 115 

 116 



6 

 

Re-Sampling Analysis methodology  117 

Each GMPE is obviously obtained based on a specific ground-motion database. Any further 118 

earthquake event can update this database in future. However, a small change in the chosen ground-119 

motion database should not significantly affect on the GMPE’s outputs. In other words, if a ground-120 

motion estimator is strongly sensitive to a small change in the ground-motion database, then, the 121 

predicted values may not be so reliable and the aleatory variability is remarkable in this case. This 122 

issue is demonstrated in Figure 2 for two different random subsets of CB08 database with 1000 123 

GMRs (CB08 database consists of 1561 records). As it is shown in Figure 2, the bias is completely 124 

different for these two selected subsets within the total database. Hence, the selected GMPE can 125 

predict quite acceptable or unacceptable results under different subsets of a general database with a 126 

constant number of records.  127 

 128 

Figure 2. The comparison of the bias for two different subsets with the same number of GMRs in the case of CB08 129 

model (T=0.0). (a) No biased, (b) biased. (The solid line is the fit line of the intra-event residuals versus RRUP by linear 130 

regression) 131 

 132 

To quantify this phenomenon, the authors have proposed the Re-Sampling Analysis (RSA) 133 

methodology to assess the sensitivity of the GMPEs to the selected datasets. The basic idea of the 134 

proposed methodology is to quantify the induced bias of the residuals versus different types of 135 

seismic input parameters. In order to denote the amount of bias and interpretation of the outcomes, a 136 

hypothesis test was defined to generate statistical p-values. The null hypothesis was defined as an 137 

unbiased fitted line at the predetermined 0.05 significance level which was generated by linear 138 

regression with respect to the given data. Additionally, the p-value, in the hypothesis test, which is 139 

used in the proposed methodology, is defined as the probability of obtaining a value of the test 140 
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statistic as extreme (or more extreme) than the value computed from the sample. The main steps of 141 

the methodology are given in Figure 3, and are summarized as the following steps: 142 

1) Select a GMPE. 143 

2) For each GMPE, a reduced number of GMRs, let say N, is selected based on uniformly 144 

random number selection with respect to moment magnitude and distance measure 145 

distribution(N ≤ maximum number of GMRs). 146 

3) The p-values corresponding to the residual components (i.e. inter-event residual, intra-147 

event residual) versus different types of seismic input parameters (e.g. moment magnitude, 148 

rupture distance, Joyner-Boore distance, and shear-wave velocity) and also the amount of 149 

different types of statistical indices (e.g. LLH, R-squared, RMSE, MAE and any other 150 

potential statistical goodness of fit), are calculated based on the reduced database which 151 

was defined in Step 2.  152 

4) Steps 2 and 3 are repeated for K times to avoid any bias from the random selection process 153 

(e.g. K=100).  154 

5) Steps 2, 3 and 4 are repeated from an initial assumption number of subsets of the data (let 155 

say N = 100) to the maximum number of the considered entire data (GMRs or events) by a 156 

constant increment (let say 100, in this study).  157 

6) The obtained indicators that were calculated in Step 3 are shown versus N (see Figure 4). 158 

Additionally, the median of each indicator, in Step 3 for N samples is calculated as a final 159 

indicator. It makes possible (and more sense) to show the final indicator in one plot for all 160 

GMPEs. 161 

 162 

Figure 3. The main steps in the proposed RSA methodology. 163 
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 164 

Implementation of RSA on NGA GMPEs 165 

In order to show the applicability of the RSA method, four NGA GMPEs have been selected 166 

with their referenced metadata. In this study, different types of residuals for NGA GMPEs are 167 

defined by means of the general random effects as written in Eq.(1): 168 

LnY LnYij ij i ij
     (1) 

where 
i

  is the random effect (also known as the inter-event residuals) for the i
th

 earthquake, and 169 

LnYij , LnYij , and 
ij
  are, respectively, the median estimate, the observed value, and the intra-event 170 

variation of the j
th

 recording for the i
th

 earthquake. 
i

  and 
ij
  are assumed to be independent and 171 

both are normally distributed, respectively, with variances 2 and 2 . In this case, it is positive to 172 

relate 
i

  and 
ij
 to the total model residual, that is defined as the difference between the observed 173 

and predicted values. Hence, the total model residual is calculated as written in Eq.(2): 174 

[ ]total
r LnY LnYij ijij i ij

      (2) 

The inter-event and intra-event residuals in Eq.(2) are defined by Eq.(3) and Eq.(4) (Abrahamson 175 

and Youngs, 1992): 176 

2

1[inter]

2 2

iN

ij

j

i i

i

r

r
N




 


 




 

(3) 

[intra]

ij ij ij ir r     
(4) 
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It should be noted that if an earthquake has just a single record, then the percentage of the 177 

residuals, that is assigned to the inter-event term, is given by the ratio
2

2 2

iN



 
. On the contrary, if 178 

there are a large number of recordings from an event, then, the inter-event term becomes the mean 179 

residuals for that event (Abrahamson and Youngs, 1992).  180 

By given the mentioned points, Figure 4 shows the RSA results for a constant period (T = 0.0 181 

s) in the case study of CB08 GMPE for 100 uniformly random selected databases (K = 100), 182 

available in the electronic supplement to this article. As seen in Figure 4, the stability of the 183 

candidate model is shown versus source parameter (e.g. Mw), path parameters (e.g. RRUP, RJB), and 184 

site parameter (e.g. VS30) by means of the inter-event (Eq.(3)) and intra-event (Eq.(4)) residuals. 185 

Also, some of the modern and traditional statistical tests (e.g. LLH index, R-squared index (R
2
), 186 

RMSE and MAE indices) are implemented as error terms with attention to the total residuals (see 187 

Eq.(2)). As CB08 model has been obtained based on the 1561 records from 64 events, however, 188 

there is not enough consistency for subsets of the whole database even the total number of data 189 

(GMRs and events) is reached. It is worth to mention that an unbiased model should represent an 190 

ascending performance while the sample size is increased. In other words, as the subset gets more 191 

data, the less bias should be observed. As seen in Figure 4, the RSA results show stable trends for 192 

inter-event residuals versus moment magnitude and intra-event residuals versus shear-wave velocity, 193 

rupture distance, and Joyner-Boore distance. The RSA results for LLH, R-squared, and error terms 194 

criteria (RMSE and MAE) are also shown in Figure 4e to Figure 4h in which they represent good 195 

convergence when the total number of database is reached. The median value (diamond point) in 196 

each RSA case is also shown in Figure 4 to express the trend of RSA versus different numbers of 197 

GMRs in the subset. 198 

 199 
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Figure 4. CB08 RSA for 100 uniformly random selected databases. (a) Inter-event residuals versus Mw, (b) Intra-event 200 

residuals versus VS30, (c) Intra-event residuals versus RRUP, (d) Intra-event residuals versus RJB, (e) RMSE, (f) MAE, (g) 201 

LLH, (h) R2. (The diamond points show the median of p-values). 202 

 203 

The RSA methodology was also applied for three other NGA GMPEs. In order to have 204 

accurate interpretation of the sensitivity of the GMPEs, based on the RSA approach, the median p-205 

values was calculated for different sorts of residuals versus different earthquake parameters and also 206 

for different statistical indices.  207 

 208 

Visual comparison of RSA results for NGA GMPEs 209 

To increase the reliability of the obtained RSA results, the K factor in step 3 in the RSA 210 

methodology should be defined appropriately. The process of choosing the optimized K factor is 211 

summarized as the following steps: 212 

1) Select an initial assumption for the number of subsets (GMRs or events), let say K=50, 213 

with a constant number of GMRs, let say N=1000, in this study. 214 

2) The p-values corresponding to the residuals, versus different types of seismic input 215 

parameters, are calculated based on the chosen subsets, which was defined in Step 1 (e.g. 216 

intra-event residuals versus RRUP). 217 

3) The median p-values is calculated and stored. 218 

4) Steps 1, 2 and 3 are repeated for T times to avoid any bias from the random selection 219 

process, let say T=50, in this study. 220 

5) The interval between the maximum and minimum of the stored median p-values in step 3 221 

is calculated. 222 
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6) Steps 1 to 5 are repeated by a constant increment (e.g. 50) in K parameter untill the 223 

interval in step 5 is less than 5%.  224 

7) The obtained intervals, which were calculated in Step 5, are shown versus K factor. 225 

Figure 5 shows the procedure of obtaining the optimized K factor according to the aforementioned 226 

steps and Figure 6 shows the results of the optimized K factor in this study. As seen in Figure 6, the 227 

median p-values are obtained for CB08 model in the case of PGA based on intra-event residuals 228 

versus RRUP for the data subsets with 1000 GMRs with 50 iterations. The optimized K factor is equal 229 

to 400 in this case. Therefore, the rest analyses in this paper are provided by implementing this K 230 

factor.  231 

 232 

Figure 5. Flowchart of obtaining the optimized K factor for RSA method in this study.  233 

 234 

Figure 6. The optimized number of random databases for RSA method.  235 

 236 

In order to prove the stability of the candidate GMPE models, 400 uniformly distributed 237 

databases (with the optimized K = 400) were implemented. The median of RSA results was 238 

calculated for NGA GMPEs and the results based on the inter-event and intra-event residuals and 239 

also the selected statistical and mathematical tests are shown in Figure 7. As an interesting fact, the 240 

results based on the primary statistical tests in Figure 7 (e.g. the LLH criterion as an information-241 

theoretic model selection method, error terms (RMSE and MAE), and coefficient of determination 242 

index) are completely independent of the sample size and follow a constant trend. The source of this 243 

fact is that all of those approaches employ a kind of averaging procedure within their 244 

methodologies. As a fact, as seen in Figure 4, RMSE, LLH, MAE and R-squared variations decrease 245 

by increasing the sample size (N). On the other hand, the median RSA results do not show a 246 
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constant trend toward different seismic input parameters versus inter-event and intra-event residuals 247 

for NGA GMPEs. This phenomenon allows us to focus on the RSA results in order to compare the 248 

GMPE models.  249 

Figure 7 shows the median of the RSA results of the NGA GMPEs by means of inter-event 250 

and intra-event residuals in order to assess the direct effect of different parameters on the RSA 251 

process. As seen in Figure 7, all NGA GMPEs show approximately consistent performance with 252 

ascending trend toward inter-event residuals versus moment magnitude. As a result,  AS08 has 253 

slightly descending performance towards shear-wave velocity and distance measures with respect to 254 

intra-event residuals. On the other hand, BA08 model has ascending trends towards source 255 

parameter (Mw) that shows good consistency of the predicted model; however, it has descending 256 

trends towards the Joyner-Boore distance, closest distance to the rupture plane and shear-wave 257 

velocity. It means that BA08 model shows the existence of bias with respect to the site parameter 258 

(VS30) as well as the path parameters (RRUP and RJB) for the case study of PGA. As a conclusion, 259 

CB08 and CY08 models demonstrate more stable performance toward its referenced database than 260 

the other candidate NGA GMPEs for this case study of PGA. This conclusion can be endorsed by 261 

the other goodness-of-fit statistics and statistical tests which were applied in this study e.g. 262 

information-theoretic method (LLH), error terms (RMSE and MAE), and coefficient of 263 

determination as seen in Figure 7(e) to 7(h). As illustrated in Figure 7, CB08 has the lowest LLH, 264 

RMSE, and MAE values and the highest R
2
 value.  265 

As a crucial point, the comparison of BA08 model’s statistical results with the RSA results 266 

indicates the nessecity of the RSA scheme through the GMPEs selection process. It should be 267 

emphasised that this conclusion is only valid in the case study of PGA and we cannot broaden it 268 

through other periods in this stage of research. It is worth to mention that the RSA method can be a 269 

complementary approach for selecting the appropriate GMPE models. 270 
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 271 

Figure 7. NGA GMPEs median of RSA for 400 uniformly random selected databases. inter-event residual towards (a) 272 

Mw, intra-event residuals towards (b) VS30, (c) RRUP, (d) RJB, statistical indices (e) RMSE, (f) MAE, (g) LLH, (h) R
2
. 273 

 274 

Conclusion 275 

A new assessment methodology, for evaluating and selecting the GMPEs, has been introduced 276 

in the current paper. The proposed procedure is based on re-sampling of uniformly random selected 277 

data subsets within a general database in order to determine the bias. The Re-Sampling Analysis 278 

method, named RSA method, can be compiled for different kinds of earthquake parameters and also 279 

different goodness-of-fit statistics or statistical tests. The authors believe that this method is a robust 280 

strategy in order to test the sensitivity of the predictive models as a pivotal feature for pre-selecting 281 

GMPEs in PSHA.   282 

In this study, in order to show the general aspects of the proposed procedure, four NGA 283 

GMPEs as worldwide predictive models, were selected and the RSA method was applied by 284 

considering their own databases for a specific period (T = 0.0 s). In some cases, the results of this 285 

study represent instability and unavoidable bias of the residuals versus the moment magnitude, 286 

distance measures, and shear-wave velocity. Also the RSA results indicate the independence of the 287 

information-theoretic method (LLH), coefficient of determination (R2), and error terms (RMSE and 288 

MAE) to the sample size. The RSA method can be a useful tool to improve the ability of selecting 289 

the most appropriate GMPE visually by means of model bias trend. 290 

The RSA methodology can be used as an essential and complementary testing method. On the 291 

other handit can be one of the most potent selecting tool of GMPEs through PSHA in specific sites 292 

and also, can be a beneficial tool for the development of GMPEs. It is worth emphasizing that more 293 
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studies are needed for the purpose of applying the proposed method in the case of weighting GMPEs 294 

within a logic-tree process,.   295 

 296 

Data and Resource 297 

To implement NGA GMPEs in the current study, essential information about NGA project, as 298 

well as NGA Flatfile used for development of NGA models and numerical programs have been 299 

employed by means of publicly available resource on the Pacific Earthquake Engineering Research 300 

Next Generation Attenuation Project web site at: http://peer.berkeley.edu/ngawest/index.html (last 301 

accessed August 2013). 302 

 303 
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 400 

Figure 1. Distribution of recordings with respect to the moment magnitude (Mw) and distance metric measures (RRUP, 401 

RJB) for the database which has been used in each NGA model, (a) CB08, (b) AS08, (c) BA08, and (d) CY08. 402 

 403 
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 408 

 409 

Figure 2. The comparison of the bias for two different subsets with the same number of GMRs in the case of CB08 410 

model (T=0.0). (a) No biased, (b) biased. (The solid line is the fit line of the intra-event residuals versus Rrup by linear 411 

regression) 412 

 413 

 414 

 415 
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 416 

Figure 3. The main steps in the proposed RSA methodology. 417 
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 418 

Figure 4. CB08 RSA for 100 uniformly random selected databases. (a) Inter-event residuals versus Mw, (b) Intra-event 419 

residuals versus VS30, (c) Intra-event residuals versus RRUP, (d) Intra-event residuals versus RJB, (e) RMSE, (f) MAE, (g) 420 

LLH, (h) R2. (The diamond points show the median of p-values). 421 
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 422 

Figure 5. Obtaining the optimized number of random databases for RSA method.  423 
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 424 

Figure 6. Obtaining the optimized K factor for RSA method in this study. 425 
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 427 
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 428 

Figure 7. NGA GMPEs median of RSA for 400 uniformly random selected databases. inter-event residual towards (a) 429 

Mw, intra-event residuals towards (b) VS30, (c) RRUP, (d) RJB, statistical indices (e) RMSE, (f) MAE, (g) LLH, (h) R2. 430 



26 

 

Table 1 431 

Summary of the NGA GMPEs, indicating distance metric and conditions of use. 432 

†VS30 
Distance 

(km) 
*
Mw 

Distance 

metric 

Dominant 

Region 
Abbreviation GMPE 

150-1500 0-200 4.0-7.0/8.0/8.5 ‡RRUP 
Western US and 

California 
CB08 Campbell and Bozorgnia 2008 

180-1300 0-200 5.0-8.0 §RJB 
Western US and 

California 
BA08 Boore and Atkinson 2008 

150-1500 0-200 4.0-8.0/8.5 RRUP 
Western US and 

California 
CY08 Chiou and Youngs 2008 

180-1500 0-200 5.0-8.5 RRUP 
Western US and 

California 
AS08 Abrahamson and Silva 2008 

450-900 0-200 5.0-8.0/8.5 RRUP 
Western US and 

California 
I08 Idriss 2008 

* Mw, Moment Magnitude (depending on fault mechanism) 433 

† VS30, Shear-wave velocity (m/sec) 434 

‡ RRUP, Closest distance to the rupture plane (Rupture distance) 435 

§ RJB, Horizontal distance to the surface projection of the rupture (Joyner-Boore distance) 436 

437 



27 

 

Table 2 438 

Explanatory Variables for Implementation within the NGA GMPEs. (Kaklamanos et al., 2010).   439 

            Parameters 
NGA GMPEs 

AS08 BA08 CB08 CY08 

S
o
u

r
c
e 

 

P
a
r
a
m

e
te

r
s 

     

Moment magnitude, Mw ● ● ● ● 

Depth to top of rupture, ZTOR ●  ● ● 

Down-dip rupture width, W ●    

Fault dip, δ ●  ● ● 

Style-of-faulting flag (function of rake angle, λ) ● ● ● ● 

Aftershock flag ●   ● 

      

P
a

th
 

P
a

r
a
m

e
te

r
s Closest distance to the rupture plane, RRUP ●  ● ● 

Horizontal distance to the surface projection of the rupture, RJB ● ● ● ● 

Horizontal distance to top edge of rupture measured perpendicular to the strike, Rx  ●   ● 

Hanging-wall flag ●   ● 

      

S
it

e
 

P
a

r
a
m

e
te

r
s Time-averaged shear wave velocity over the top 30 m of subsurface, VS30 ● ● ● ● 

Depth to bedrock or specific shear wave velocity horizon (Z1.0, Z2.5) ●  ● ● 

PGA (or SA) on rock, as baseline for nonlinear site response ● ● ● ● 

 440 
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