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The conditional mean spectrum based on the robust regression 
analysis 
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Abstract – The conditional mean spectrum (CMS) has been recently proposed as an alternative 
to the uniform hazard spectrum (UHS) to be employed as a target spectrum in ground motion 
record selection. The CMS provides the expected response spectrum, conditioned on occurrence 
of a target spectral acceleration value at the period of interest. A robust regression analysis is 
proposed in this manuscript to improve the current CMS which is based on a conventional 
regression analysis. The results show that the proposed robust CMS significantly differs from the 
conventional CMS, especially for higher periods of interest. The shape of the robust CMS 
represents the rare ground motions in a more reliable manner, comparing with the conventional 
CMS. 
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I. Introduction 
The assessment of structural seismic response is often 

done by selecting ground motion records that conforms 
to the seismic hazard conditions of the objective site 
which can be obtained based on the probabilistic seismic 
hazard analysis (PSHA). A common record-selection 
practice (e.g. ACSE7-05) suggests selecting seven 
records which are compatible with the dominant 
earthquake scenario in a given site. This dominant 
scenario is represented with two key parameters, 
magnitude (Mw) and distance (R), which can be obtained 
by disaggregation analysis [1]. The selected records are 
then scaled (if necessary) to match the design level of the 
uniform hazard spectrum (UHS). Both the UHS and the 
disaggregation analysis are outputs of PSHA and can be 
determined for any desired level of hazard such as 10% 
or 2% probability of exceedance in 50 years. For clarify 
of exposition, consider a hypothetical site where the only 
possible nearby earthquake event is a magnitude 7 
earthquake at a distance of 10 km, occurring at a mean 
rate of once every 75 years. The soil shear wave velocity 
is assumed equal to 760 m/sec for this site. By using an 
appropriate ground motion prediction model, here CB08 
[2], the median (μ) and the median plus one standard 
deviation (μ + σ) spectra are plotted in Fig 1. 

By using basic probability theory, these two spectra 
correspond to ground motions with 150 and 475 years 
return period, respectively (i.e. 1)

475
751(1 =−Φ−  where Ф 

is the standard Gaussian cumulative distribution 
function). Also, the expected ground motion spectrum 
for 2475 years return period corresponds to μ+1.88σ. As 
a result, it is rational to say that the different levels of 

hazard for this site are represented by vector <M, R, ε>. 
The third component of this vector specifies the level of 
increase/decrease of mean spectrum for different hazard 
levels. 

Table I signifies the corresponding ε values for 
different hazard levels for the prescribed assumed site. 
The exceedance probability in 50 years is also indicated 
in this Table for different hazard levels. Therefore, the 
UHS for any desired level of hazard at the mentioned site 
is defined as: 

 
)(),,( lnln)(ln iSaiSaTSa TTRM

i
εσμμ +=       (1) 

 
where μlnSa(Ti) is the natural logarithm of the expected 

spectral acceleration at the given period Ti and μlnSa and 
σlnSa are, respectively, the predicted median and standard 
deviation values obtained from the ground motion 
prediction model for the dominant event. 
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Fig 1. The median spectrum in comparison with 475 and 2500 years 
UHS. 
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TABLE I 
 THE VALUE OF ε FOR DIFFERENT HAZARD LEVELS IN 

THE CONSIDERED SITE. 
Return 
period 
 (years) 

Exceedance  
Probability in 50 

years 
ε 

100 39% -
0.67 

150 28% 0 
250 18% 0.52 
475 10% 1 

2475 2% 1.88 
 
As shown in Equation (1), the UHS remains at a 

constant ε standard deviation from the median response 
spectrum at all periods. Considering a high positive ε 
value, the UHS represents an expected ground motion 
spectrum that all of its points take simultaneously rare 
values. This issue is in a significant conflict with the 
nature of real ground motion records [3]. The rate of 
observing a high positive ε at all periods is much lower 
than the rate of observing a high ε at any single period. 
Thus it can be concluded that the UHS represents a 
nearly impossible earthquake scenario, especially in 
higher levels of hazard [4]. The conservatism of the UHS 
has been addressed also by other researchers [5],[6]. 

To deal with this problem the conditional mean 
spectrum (CMS) has been recently introduced by Baker 
to be used in structural analysis instead of using UHS 
[7]. The correlation of ε values in different periods is 
considered in CMS development; hence, the mentioned 
conservatism is taken into account. 

 In order to explain this spectrum, consider a structural 
system with fundamental period, T*=1.0 sec, located at 
the above mentioned site. Suppose that the level of 
hazard of interest is 2475 years return period which 
corresponds to ε=1.88. Since the Sa value at the 
fundamental period of structure has been accepted as a 
common efficient intensity measures in literature [8], we 
assign the target ε value to this period e.g. ε(1.0s)=1.88. 
Considering that assignment of this ε value to other 
periods leads to a conservative spectrum, the question is 
then, what are the associated ε values at other periods, 
given that we know ε(1.0s)=1.88? This question can be 
responded by considering Fig 2. By using a large set of 
ground motions (as defined in Section II.2), the 
correlation between ε of T=1.0s and ε of other periods 
has been revealed in Fig 2. It is obvious that the different 
ε values are correlated, however with different 
coefficients of correlation (ρ). For more clarification, 
ε(1.0s) is plotted against ε(0.25s), ε(0.50s), ε(2.0s), and 
ε(4.0s), respectively, in Fig 2a, 2b, 2c and 2d. 
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Fig 2. The Scatter plot of ε values from a large set of ground motions.  

ε(1.0s) versus (a) ε(0.25s), (b) ε(0.5s), (c) ε(2.0s), and (d) ε(4.0s). 
 
By using this information, it is possible to predict the 

expected value of ε at different periods, given that we 
know the value of target ε at the period of interest (here, 
T=1.0 s). Based on probability calculations, Baker 



 
F. A. Author, S. B. Author, T. C. Author 

Copyright © 2013 Praise Worthy Prize S.r.l. - All rights reserved       International Journal of Earthquake Engineering and Hazard Mitigation, Vol. xx, n. x 

proposed to take the expected ε values at any other 
period equal to the target ε multiplied by the correlation 
coefficient between the two ε values as mathematically 
written in Equation (2) [7]: 

 
( ) )()(),()( ** TTTT ii εεερε =                        (2) 

 
The correlation coefficient between two sets of 

observed ε values can be estimated as: 
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where εk(T1) and εk(T2) are the kth observations of 

ε(T1) and ε(T2), and are their sample means, and n is the 
total number of observations (records). The expected ε 
values for periods 0.25, 0.5, 2.0, and 4.0 s are predicted 
0.75, 1.35, 1.49, and 1.13, respectively, given 
ε(1.0sec)=1.88. This procedure has been repeated for an 
entire range of periods and the resulted correlations are 
used in Equation (4) to find the conditional mean 
spectrum (CMS). 
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Fig 3 compares the CMS given ε(1.0sec)=1.88 in 

comparison with the UHS and the mean spectrum. This 
figure also includes CMS at a few other periods, having 
equal ε=1.88. 

 

10-2 10-1 1000

0.5

1

1.5

2

Period (sec)

Sp
ec

tr
al

 A
cc

el
er

at
io

n 
[g

]

 

 UHS
CMS spectra
Median spectrum

 
 
Fig 3. Conditional Mean Spectra, conditioned on Sa values at a few 

periods, having equal ε=1.88. 
 
A few closed form empirical formulas have been 

proposed in literature to find the correlation coefficient 
for different periods [9],[10]. Each of these closed form 
formulas in conjunction with Equation (2) build a 
complete framework to construct the CMS and use it 
instead of UHS in structural dynamic analyzes. For more 
details, see [7]. 

The main objective of this paper is to reveal an 
important drawback in the above mentioned procedure 

for calculation of CMS. The authors think that the 
developed procedure for CMS leads to an anomaly 
spectral shape that is not enough consistent with real 
ground motions. This guess arises from comparison of 
the CMS and mean spectrum in Fig 3. The mean 
spectrum, as shown in Fig 3, has a peak value near the 
period T=0.15 sec and then this spectrum decays with a 
relatively rapid rate. However, this pattern is not 
observed in the shape of different CMS curves. The peak 
shape is not clear and a relatively flat region is observed 
near the mentioned period in all CMS curves. According 
to these observations, this hypothesis was formed that the 
developed CMS procedure suffers from a systematic 
bias. A conventional regression analysis has been applied 
in the original paper of CMS [7] to measure the degree of 
correlation of ε values in different periods and the 
influence of outlier data has not been studied. The 
authors think that this overlook significantly affects the 
resulted correlation coefficients and it shall be taken into 
account in the CMS development procedure. This issue 
is considered in the following sections. 

II. Introducing a Procedure to Find 
Robust CMS 

II.1. About the Robust Regression Analysis 

Robust regression is an important tool for analyzing 
data that are contaminated with outliers. Outliers are 
sample values that cause surprise in relation to the 
majority of the sample [11]. Many robust methods have 
been developed since 1960 to detect outliers and to 
provide resistant (stable) results in the presence of 
outliers [11]. In order to achieve this stability, robust 
regression limits the influence of outliers.  

Robust regression analysis works by assigning a 
weight to each data point. Weighting is done 
automatically and iteratively using a process called 
iteratively reweighted least squares [12]. In the first 
iteration, equal weight is assigned to each point and 
model parameters are estimated using conventional least 
squares. At subsequent iterations, weights are 
recomputed so that points farther from model predictions 
in the previous iteration are given lower weight. The 
model parameters are then recomputed using weighted 
least squares. The process continues until the values of 
the estimated parameters converge within a specified 
tolerance. It is needed to mention that except the 
iteratively reweighted least squares process; many other 
techniques have been also developed for robust 
regression problems which can be found in [11]. 

In the following sections, the iteratively reweighted 
least squares technique has been applied to find the 
robust correlation coefficient of ε values. Before that, the 
employed ground motion set is defined. 
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II.2. The Ground Motion Data Set 

A strong ground motion records data set based on 
worldwide recordings of shallow crustal earthquakes is 
selected which was also used by Baker and Cornell [9] to 
analyze the correlation of response spectral values. This 
set includes 267 pairs of horizontal ground motion 
records with magnitudes greater than 5.5 and source-to-
site distances of less than 100 km. The other selection 
criteria, as well as the detailed documentation about this 
set, are given in [13]. 

II.3. The Robust CMS 

Using the above mentioned data set, a conventional 
regression analysis has been done by Baker and Cornell 
[9] to build a linear model between ε values in different 

periods. In that study, the influence of outlier ground 
motions was not taken into account. Here, it is supposed 
that the results obtained from that study are not 
sufficiently stable and application of a robust regression 
is needed to find more strength correlation coefficients. 

For convenience, assume that for the interest period 
T*=1.0 sec, the correlation analysis is done just for four 
periods: T=0.25, 0.50, 1.0, 2.0, and 4.0 sec. On the other 
hand, the objective CMS is constructed just based on five 
period values (T*, and T). Fig 4 shows the scatter plot of 
ε(1.0sec) versus ε(0.25s), ε(0.50s), ε(2.0s), and ε(4.0s). 
The slope of solid line corresponds to the correlation of 
coefficient, as mentioned in section I. 
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Fig 4. The Scatter plot of ε values from the introduced data set,  
ε(1.0s) versus (a) ε(0.25s), (b) ε(0.5s), (c) ε(2.0s), and (d) ε(4.0s). Four random records are marked. 

 
    Four random ground motions are marked in Fig 4. 
Since the selected records do not match exactly to the 
regression line, a residual parameter is defined for each 
record corresponding to the considered period: 

 
( ) )(,)(),( *** TTTTTTr iii ερε −=                  (5) 

 
where r(T*,Ti) symbolizes the observed residual in 

prediction of ε(Ti) from ε(T*). Investigation of residual 
values for these four ground motions illuminates that 

why it is necessary to assign different weight to each 
record and then re-calculate the correlation coefficient. 

 
- The record, marked as (I), shows significant 

negative residual at periods 0.25 and 0.50 sec, slight 
negative residual at T=2.0 sec, and slight positive 
residual at T=4.0 sec. The residual vector [-2.35, -1.49, -
0.42, 0.37] quantifies the residuals corresponding to this 
record. The mean of residual vector is μ= -0.97 and its 
standard deviation is σ=1.19. Based on the mentioned 
periods, this record can be accounted as a highly outlier 
ground motion. 
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- The residual vector for the record (II) is [-1.27, -
0.76, -2.32, -1.92] with mean value μ=-1.57 and σ=0.69. 
This record has negative residual values in all periods. 
Comparing with record (I), it has greater negative μ and 
it should be accounted as a more outlier data. As a direct 
result, a smaller weight shall be assigned to this record in 
comparison with the record (I). 

 
- The residual vector for the record (III) is [0.44, -

0.29, -0.16, 0.034], with μ=-0.01 and σ=0.32. Comparing 
with two former records, this record is well-matched to 
the regression line in all periods and a higher weight 
value should be assigned to it. 

 
- The residual vector for the record (IV) is [0.44, -

0.01, 0.21, -0.12], with μ=-0.13 and σ=0.25. A higher 
weight should be assigned to this record in comparison 
with records (I) and (II). However, due to greater μ and 
smaller σ value, the judgment about the weight of this 
record is not straightforward in comparison with the 
record (III). 

 
The resulted residual vectors can be integrated in a 

residual matrix, 
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Also, the vectors M and Σ indicates the mean and 

standard deviation of records: 
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Fig 5 shows the box-plot of residual vectors for the 

considered ground motion records. The median and 
standard deviation of each residual vector was explained 
by using this figure. A snapshot to the degree of outlier 
of each ground motion record is achievable through this 
figure. 

 

 
 

Fig 5. The box-plot of residual vectors for the selected ground 
motion records. 

 
Rationally, the greater weight should be assigned to 

the ground motions with lower absolute mean and 
standard deviation. Here, a Gaussian function has been 
selected to meet the mentioned concern: 
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where wi is the objective weight, and μi, and σi 

correspond to the mean and standard deviation of the 
residual vector of the considered record. 

Now, the iteratively reweighted least squares 
procedure is applied to find the robust correlation 
coefficient values. The used algorithm can be 
summarized as: 

 
1- Take the initial weighting vector as unity, 

]1111[=w  
  
2- Calculate the ρ values for regression model using 

Equation (3). 
 
3-  Find the residual mean vector (M) as well as the 

residual standard deviation vector (Σ). 
 
4- Determine the weighting vector based on Equation 

(6). 
 
5- Multiply ε values of each record by the 

corresponding weight value.  
 
6- Repeat steps 2 to 5 until the ρ values converge to a 

stable rate. 
 
Table II comprises the resulted values during the 

iterations. As indicated in this table, the iterative 
procedure converges to stable ρ and w values after a few 
iterations. 
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TABLE II 
THE ITERATIVE PROCEDURE TO FIND THE ROBUST COEFFICIENT CORRELATION 

 Iteration 
Weights (w)  ρ(T*=1s, Ti) 

                         Selected Records                 Ti 
I II III IV  0.25s 0.50s 2.0s 4.0s 

1 1.000      1.000 1.000 1.000  0.40 0.72 0.79 0.60 
2 0.240 0.043 1.253 1.413  0.49 0.82 0.86 0.73 
3 0.33 0.026 0.158 0.176  0.54 0.83 0.89 0.80 
4 0.318 0.028 0.411 0.469  0.56 0.84 0.89 0.81 
5 0.317 0.028 0.433 0.455  0.57 0.84 0.88 0.80 
6 0.317 0.028 0.436 0.455  0.58 0.84 0.88 0.80 
7 0.317 0.028 0.436 0.454  0.59 0.84 0.88 0.79 
8 0.317 0.028 0.436 0.454  0.60 0.84 0.88 0.79 
9 0.317 0.028 0.436 0.454  0.61 0.84 0.88 0.79 
10 0.317 0.028 0.436 0.454  0.61 0.84 0.88 0.79 
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Fig 6. The comparison of the robust regression with conventional regression model. 

 
 
Fig 6 compares the resulted robust regression with the 

conventional regression model. As it is obviously clear, 
the robust regression increases the values of correlation 
coefficient in all periods. This increase is more 
significant in the lowest period case i.e. T=0.25 sec. 

 By replacement of the robust correlation coefficients 
in Equation (4), the robust CMS is achievable. Fig 7 
compares the resulted robust and the conventional CMS. 
Note that the CMS are formed here by using only five 
spectral acceleration values in five periods. 
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Fig 7. The comparison of the robust CMS with the conventional 
CMS. 
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As shown in Fig 7, the shape of obtained robust CMS 
is significantly different with the conventional CMS, 
especially in low periods. This issue will be more 
discussed in the next section, where the robust CMS 
procedure is extended for an entire range of periods. 

III. Final Results of the Robust CMS 

III.1.  Development of the Robust CMS Procedure for 
The Entire Period Range. 

In the former simple example, the ground motions 
were weighted just for interest period T*=1.0sec. This 
weighting procedure was done based on analysis of 

residuals in four other periods 0.25, 0.50, 2, and 4 sec. 
Here, this procedure is extended to several interest 
periods and the analysis of residuals for each interest 
period is completed for an entire range of other periods. 

The conventional and robust correlation coefficients, 
at a variety of period pairs, are plotted in Fig 8. This 
figure shows correlation coefficients for a selected set of 
periods Ti, plotted versus T* values between 0.01 and 5 
seconds. The higher value of ρ in lower periods in robust 
analysis is clear in this figure, comparing to the 
conventional analysis results. Fig 9 shows the same 
results, plotted using contours of correlation coefficients 
as a function of both Ti and T*. 
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Fig8. Plot of correlation coefficients versus T*, for several Ti values; based on 

(a) Conventional analysis (b) Robust correlation analysis. 
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Fig9. Contours of correlation coefficients versus T* and Ti; based on 

(a) Conventional analysis (b) Robust correlation analysis. 
 

The numerical values from Fig 9 are provided in 
Table III. This table can be used when correlation 
coefficients for a specific ground motion scenario are 

needed. For comparison, this table includes both 
conventional and robust analysis results. 
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TABLE III 
Correlation coefficients of ε(T*) versus ε(Ti) obtained using CB08 ground motion prediction model; 

 (a) Conventional analysis approach, and (b) Robust approach. 
 

             (a) 
Ti

  0.02 0.05 0.1 0.2 0.3 0.4 0.5 0.75 1 1.5 2 2.5 3 4 5 

T* 

0.02 1.00 0.97 0.85 0.84 0.85 0.83 0.80 0.69 0.58 0.50 0.41 0.36 0.34 0.31 0.28 
0.05 0.97 1.00 0.91 0.85 0.81 0.76 0.71 0.58 0.46 0.39 0.31 0.27 0.26 0.24 0.23 
0.1 0.85 0.91 1.00 0.85 0.71 0.61 0.54 0.40 0.27 0.22 0.15 0.13 0.10 0.11 0.12 
0.2 0.84 0.85 0.85 1.00 0.78 0.67 0.59 0.45 0.31 0.25 0.15 0.11 0.08 0.08 0.08 
0.3 0.85 0.81 0.71 0.78 1.00 0.83 0.75 0.61 0.50 0.43 0.32 0.28 0.27 0.24 0.22 
0.4 0.83 0.76 0.61 0.67 0.83 1.00 0.88 0.73 0.62 0.56 0.46 0.41 0.40 0.34 0.29 
0.5 0.80 0.71 0.54 0.59 0.75 0.88 1.00 0.83 0.72 0.64 0.54 0.49 0.48 0.42 0.37 
0.75 0.69 0.58 0.40 0.45 0.61 0.73 0.83 1.00 0.87 0.76 0.67 0.62 0.59 0.53 0.46 

1 0.58 0.46 0.27 0.31 0.50 0.62 0.72 0.87 1.00 0.87 0.79 0.72 0.69 0.60 0.52 
1.5 0.50 0.39 0.22 0.25 0.43 0.56 0.64 0.76 0.87 1.00 0.89 0.81 0.76 0.68 0.61 
2 0.41 0.31 0.15 0.15 0.32 0.46 0.54 0.67 0.79 0.89 1.00 0.92 0.86 0.77 0.67 

2.5 0.36 0.27 0.13 0.11 0.28 0.41 0.49 0.62 0.72 0.81 0.92 1.00 0.94 0.82 0.72 
3 0.34 0.26 0.10 0.08 0.27 0.40 0.48 0.59 0.69 0.76 0.86 0.94 1.00 0.88 0.77 
4 0.31 0.24 0.11 0.08 0.24 0.34 0.42 0.53 0.60 0.68 0.77 0.82 0.88 1.00 0.90 
5 0.28 0.23 0.12 0.08 0.22 0.29 0.37 0.46 0.52 0.61 0.67 0.72 0.77 0.90 1.00 

  
 

(b)  
Ti 

  0.02 0.05 0.1 0.2 0.3 0.4 0.5 0.75 1 1.5 2 2.5 3 4 5 

T* 

0.02 1.00 0.97 0.88 0.88 0.82 0.78 0.79 0.74 0.63 0.59 0.53 0.45 0.42 0.25 0.27 
0.05 0.96 1.00 0.91 0.85 0.75 0.67 0.67 0.61 0.48 0.47 0.42 0.34 0.31 0.15 0.20 
0.1 0.80 0.88 1.00 0.79 0.60 0.47 0.47 0.38 0.25 0.28 0.23 0.16 0.12 0.04 0.12 
0.2 0.80 0.82 0.80 1.00 0.71 0.55 0.52 0.40 0.31 0.30 0.23 0.14 0.11 0.01 0.07 
0.3 0.81 0.78 0.73 0.81 1.00 0.78 0.75 0.65 0.57 0.53 0.44 0.36 0.32 0.18 0.20 
0.4 0.83 0.77 0.70 0.74 0.83 1.00 0.88 0.77 0.68 0.65 0.59 0.51 0.48 0.33 0.33 
0.5 0.80 0.72 0.67 0.69 0.79 0.87 1.00 0.85 0.76 0.72 0.65 0.59 0.56 0.43 0.40 
0.75 0.78 0.69 0.58 0.63 0.74 0.78 0.86 1.00 0.88 0.81 0.75 0.71 0.68 0.55 0.48 

1 0.74 0.63 0.54 0.56 0.68 0.75 0.84 0.91 1.00 0.89 0.84 0.79 0.75 0.64 0.58 
1.5 0.79 0.69 0.65 0.65 0.74 0.78 0.83 0.88 0.91 1.00 0.91 0.84 0.81 0.74 0.70 
2 0.78 0.69 0.63 0.62 0.73 0.76 0.81 0.87 0.89 0.92 1.00 0.93 0.88 0.82 0.76 

2.5 0.74 0.67 0.63 0.61 0.71 0.74 0.79 0.85 0.86 0.88 0.94 1.00 0.94 0.85 0.82 
3 0.72 0.64 0.61 0.58 0.71 0.75 0.80 0.87 0.86 0.87 0.90 0.95 1.00 0.90 0.86 
4 0.67 0.61 0.55 0.54 0.68 0.69 0.75 0.82 0.83 0.83 0.86 0.88 0.90 1.00 0.93 
5 0.54 0.48 0.40 0.40 0.57 0.53 0.66 0.73 0.74 0.75 0.76 0.78 0.81 0.89 1.00 

 
Investigation of Fig 9 shows that despite the 

conventional analysis, the robust analysis has been 
yielded to asymmetric ρ results, i.e. 
( ) )(, 2121 TTTT =≠ ρρ . It means that the assigned weight 

to a single record is not constant and depends on the 
interest period (T*). 

The robust CMS is achievable through the robust 
correlation coefficients, as stated in the former section. 
Fig 10 shows the robust CMS in a few interest periods 
for ε=1.88. This figure also comprises the conventional 
CMS and UHS curves. 

The difference between the robust and the 
conventional CMS curves is significant, especially for 
higher interest periods which clarify the need to take the 
outliers into account. 

 
 
 

III.2. Discussion on the Results 

By focusing on the case T*=4.0 sec in Fig 10, the 
conventional CMS approximately touches the mean 
spectrum in lower periods. This issue is resulted from a 
weak correlation between ε(4.0s) and ε values at low 
periods. In the conventional CMS procedure, the 
correlation between two periods is independently 
analyzed, without any consideration to the other periods. 
This memory-less correlation calculation approach is 
questionable from the author’s viewpoint. Let us take a 
simple example for more clarification. Two given 
records with equal ε(4.0sec)=1.88 are plotted in Fig 11. 
The record A has a relatively high positive ε values in 
the range of period 0.01 to 4.0 sec. On the other hand, 
the record B has negative value of ε in the majority of 
remained periods except in T=4 sec, as shown in Fig 11.
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Fig 10. The robust CMS, conditioned on Sa values at the interest period. 

(a) T*=0.50 sec, (b) T*=1.0 sec, (c) T*=2.0 sec, and (d) T*=4.0 sec, having equal ε=1.88. 
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Fig 11. Comparison of two single records that have equal ε(4.0s)=+1.88, but different distribution of ε in the other periods. 
 

Now the problem is to predict the value of ε(0.25s), 
given the ε(4.0s)=1.88, based on the given two records. 
According to the conventional regression analysis, the 
correlation of ε(0.25s) and ε(4.0s) is analyzed without 
any consideration to the shape of records, and a linear 
regression model is constructed to solve the problem. So, 
both records are accounted similar and a unit weight is 
assigned to them. According to Fig 11, it is obvious that 
a weak correlation is calculated between ε(4.0s) and 
ε(0.25s) based on two given records. Now coming back 
to the philosophy of hazard consistent spectral shape, it 
is absolutely obvious that the record A represent a rare 
record, despite the record B that barely shows a rare 
event. At least, it can be said that each of these two 

records may represent rare events but with different 
degrees. The assigned weight to each of records in robust 
regression analysis corresponds to the mentioned degree. 
It means that the weight assigned to the record A is 
higher than the weight of the record B because the ε 
values in all periods are in agreement with ε(4.0s) for the 
record A. On the other hand, since the ε(4.0s) value is 
not compatible with the ε in the other periods, a lower 
weight should be assigned to the record B in comparison 
with the first record. As a direct consequence of this 
weighting procedure, the correlation between ε(4.0s) and 
ε(0.25s) arises comparing with the conventional 
regression. 
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As the concluding result, the robust CMS shown in 
Fig 10 characterizes the rare 2500 years ground motions 
in a more reliable way comparing with the conventional 
CMS procedure. It worth emphasizing that the 
conventional CMS is non-conservative, specifically for 
the mid-rise and high-rise structures in higher levels of 
seismic hazard. 

IV. Conclusions  
The uniform hazard spectrum (UHS), as a common 

target spectrum for structural dynamic analysis, does not 
represent a spectrum caused by a single earthquake at a 
given site and leads to a conservative spectrum in higher 
hazard levels. As an alternative, the conditional mean 
spectrum (CMS) has been introduced in recent years. 
The CMS uses the advantages of correlation between 
spectral accelerations at different periods. This 
correlation is calculated based on a conventional 
regression analysis between different pairs of periods 
and the correlation analysis for each pair of periods is not 
influenced by result of correlation analyzes in other 
pairs. In this paper, it was demonstrated that using the 
mentioned conventional regression analysis may leads to 
a systematic bias in results and a robust regression 
analysis was proposed to calculate the robust correlation 
coefficients. In the robust CMS, the ground motion 
records are contributed with different weights in 
regression analysis, depending on a rational residual 
analysis. The final results show that the robust CMS 
significantly differs from the conventional CMS, 
especially for higher interest periods. As a final point, the 
shape of robust CMS represents the rare events in a more 
reliable manner, comparing with the conventional CMS. 
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