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SUMMARY

How to select a limited number of ground motion records (GMRs) is an important challenge for the non-
linear analysis of structures. Since epsilon (εSa) is an indicator of spectral shape, which has a significant
correlation with the non-linear response of a structure, the selection of GMRs based on the hazard-related
target εSa is a reasonable approach. In this paper, an alternative indicator of spectral shape is proposed,
which results in a more reliable prediction of the non-linear response for the structures with the natural
period of 0.25 to 3.0 s. This new parameter, named eta (�), is a linear combination of εSa and the peak
ground velocity epsilon (εPGV). It is shown that �, as a non-linear response predictor, is remarkably more
efficient than the well-known and convenient parameter εSa. The influence of �-filtration in the collapse
analysis of an eight-story reinforced concrete structure with special moment-resisting frames was studied.
Statistical analysis of the results confirmed that the difference between ε-filtration and �-filtration can
be very significant at some hazard levels. In the case of this structure, the resulting annual frequency of
collapse was found to be lower in the case of �-based record selection, in comparison with the ε-based
record-selection approach. Copyright � 2011 John Wiley & Sons, Ltd.
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1. INTRODUCTION AND GOALS OF THE STUDY

One of the challenges in assessing structural collapse performance is the appropriate selection
of ground motion records (GMRs) for use in non-linear dynamic collapse simulation. The GMR
selection issue was studied from different viewpoints in a few recent researches [1, 2].

The current best record-selection practice (e.g. [3]) recommends using seven or fewer records,
which represent the magnitude and the distance identified by probabilistic seismic hazard analysis
(PSHA) disaggregation [4]. These records are then scaled (if necessary), in one manner or another,
to match the level of the uniform hazard spectrum (UHS). For a given ground motion hazard level
(e.g. a 2% chance of exceedance in 50 years), it has been shown that the shape of the UHS can be
quite different from the shape of the expected response spectrum of a real GMR having an equally
high spectral amplitude at a particular period [5, 6]. For this reason, the current code-based practice
is usually conservatively biased for structural collapse assessment [6]. Also, it is shown that there
is not enough evidence to prove the hypothesis of influence of using the magnitude and distance
on the structural non-linear response [7]. Spectral shape characteristics are especially important
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for structural collapse assessment because it is at high amplitudes that these differences are the
most significant [8, 9]. One approach that can be used to take into account the spectral shape in
structural analysis is to select and scale GMRs by an intensity measure (IM) other than Sa(T1),
which accounts for the spectral shape in either an implicit or an explicit manner. Possible IMs
include the inelastic spectral displacement [10], or the spectral value averaged over a period range
[6]. However, since the seismic hazard parameters have not yet been developed for these IMs, the
preferred approach is to use the convenient Sa(T1).

It is quite well known that the response spectra epsilon (ε) is an indicator of the elastic spectral
shape of GMRs [6]. The parameter ε is a measure of the difference between the spectral acceleration
of a record and the mean value of the spectral acceleration, obtained from a ground-motion
prediction equation at a given period. It is noteworthy that the parameter ε has a seismological
origin. The three parameters that can vary for a given site and a given fault are magnitude (Mw),
distance (R), and ε [11]. The relative contribution of these parameters to the rate of exceedance
of a given ground motion IM can be calculated by the application of the seismic disaggregation
procedure [4, 12]. The combination of Mw, R and ε, which provides the largest contribution to the
desired hazard, is interpreted as the earthquake scenario. Therefore, the most direct approach that
can be used to account for the spectral shape in structural analysis is to select GMRs that have
Mw, R and ε values that match the target values obtained from the corresponding disaggregation
analysis.

The parameter ε is not a perfect indicator of spectral shape due to the random nature of ground
motion records. The ε values of GMRs and the associated non-linear response of a given structure
are in partial correlation. The ability of ε to predict the non-linear response of a given structure
depends on the strength of this correlation.

The objective of this study is to investigate the robustness of ε as a non-linear response predictor,
and also to establish a more reliable indicator of spectral shape which could lead to a better
prediction of non-linear response. The main idea belonging to this goal is the incorporation of
the time-domain IMs (i.e. PGA, PGV and PGD) with the frequency-domain IMs (i.e. the spectral
values) in order to create a more reliable indicator of the elastic spectral shape.

Even if the parameter ε is usually related to the acceleration response spectra, it can also be
extended to each arbitrarily selected IM, as expressed in Equation (1):

εIM= ln IM− lnIM

�ln IM
(1)

where IM and IM are, respectively, the observed IM and the attenuation-related IM, and �ln IM
indicates the anticipated standard deviation for the predicted IM. The aim is to find a new indicator,
hereinafter named ‘eta’ (�), as a function of the different epsilons, which would result in a better
indication of the spectral shape.

If a combination of different epsilons is to be used for record selection, the choice of the
target value of the included epsilons is a practical challenge. As mentioned above, a standard
hazard disaggregation analysis can provide only the target ε, whereas the other target epsilons
are undetermined. Assuming similar values for these epsilons might be challengeable since these
different epsilons might not be equal at different hazard levels. All of these aspects are discussed
in this paper.

2. EPSILON; A PREDICTOR OF NON-LINEAR RESPONSE

The parameter ε is an indicator of the spectral shape, as mentioned in the previous section, and as a
result, the collapse capacity of a given structure can be influenced by this. In order to investigate the
effect of ε on the non-linear response of a structure, a set of non-linear single-degree-of-freedom
(SDOF) systems, as well as an appropriate bin of GMRs, was considered. A period range of
0.1–2.0 s, as well as a ductility range of 2 to 12, was used for the SDOF systems. The collapse
capacity values were calculated using incremental dynamic analysis (IDA), and a precise trace
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Figure 1. The correlation between the parameter εSa and the collapse capacity values:
(a) T =1.0s, �=6 and (b) T =2.0, �=12.

of the collapse capacity point was performed using the Hunt and Fill algorithm [13]. The bin
of applied GMRs includes 78 records, with a magnitude range of 6.5–7.8. These records were
obtained from the PEER web site [14]. The selection criteria and the other information can be
found in [15]. More details of structural systems, collapse assessment procedure and GMRs bin
are referred in the Appendix A.

Figure 1 shows the correlation between the parameter ε and the collapse capacity values for two
SDOF systems with periods of 1.0 and 2.0 s, and ductility values equal to 6 and 12. The epsilon
values were determined based on the Campbell and Bozorgnia attenuation relationship [16].

The correlation shown in Figure 1 confirms the influence of the parameter ε on the non-linear
response. Owing to this correlation, it is anticipated that the selection of GMRs based on ε-filtration
results in a reduction in the potential bias in the prediction of the structural non-linear response.
It is clear that the amount by which the potential bias can be reduced strongly depends on the
size of the correlation between the non-linear response and the parameterε. For example, due to
the higher correlation in the case of the more ductile system, as shown in Figure 1, the epsilon is
more efficient for systems with higher ductility compared with other less ductile SDOF systems.
The correlation coefficient (�) between two random variables X and Y with the expected values
�X and �Y and standard deviations �X and �Y was defined as the covariance normalized by the
product of their standard deviations, as written in Equation (2).

�= cov(X,Y )

�X�Y
= E((X−�X )(Y −�Y ))

�X�Y
(2)

The greater influence of epsilon on ductile structures has also been inferred in the other studies [8].
The above analysis for all of the considered SDOF systems showed that the average correlation
coefficient is just 0.43 (0.31, 0.41, 0.42, 0.45, 0.48 and 0.51 for different ductility values). It is
reasonable to take this correlation coefficient as an index of efficiency of the parameter εSa for
reducing the potential bias in the non-linear response.

The potential of other IMs, such as epsilons (εIM), as response predictors can also be investigated.
For example, Figure 2 shows the collapse capacity values of an SDOF system versus εPGA andεPGV.
Each of the individual parameters εPGA and εPGV can be treated as a response predictor, although
they show a lower efficiency, as shown in Figure 2, in comparison with εSa.

The main contribution of this study is that a more robust predictor of non-linear response has
been obtained by considering the parameter � as a linear combination of different epsilons. This
hypothesis is studied in the following section.
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Figure 2. The correlation between the time-domain epsilon values and the collapse
capacity values: (a) εPGA and (b) εPGV.

3. ETA; A MORE ROBUST PREDICTOR OF NON-LINEAR RESPONSE

Each of the IM epsilons can reflect a part of information hidden in a given GMR. Here, it is shown
that a combination of IM epsilons can result in a more robust prediction of the structural response.

Again, let us assume an SDOF system with a period of 2.0 s and ductility equal to 12. A linear
trend, as expected, exists between εSa and the non-linear response as shown in Figure 3(a). The
correlation coefficient between these variables was determined to be equal to 0.50. Now consider
the parameter � as a linear combination of εSa, εPGA, εPGV and εPGD as written in Equation (3):

�=εSa+c1εPGA+c2εPGV+c3εPGD (3)

The objective is to find the best values for the constant coefficients (c1, c2 and c3), which result
in the maximum correlation between � and the non-linear response. By application of the Genetic
Algorithm (GA) [17], as a powerful tool for optimization, the optimum constant coefficients were
determined to be equal to:

c1=0.50, c2=−0.74, c3=−0.42

The achieved correlation coefficient is 0.75, and is significantly greater than the previously obtained
value, as shown in Figure 3(b). It is thus reasonable to claim that the potential of � is greater than
εSa to predict the non-linear response.

Equation (3) was based on just one particular case, and hence it does not represent all of the
investigated SDOF systems. A regression analysis for the response of all of the SDOF systems
is needed in order to develop a general response predictor. Since the non-linear response of each
SDOF system is related to its characteristics (period and ductility), it is necessary to involve the
period and the ductility values in the regression analysis. However, since the major purpose of a
response predictor is to predict how any record provides a high response or a low response, the
dependency of the response predictor on the structural characteristics can be removed with the
normalization of each SDOF response to the standard form with a zero mean and unit variance.
As illustrated in the Appendix A, the goodness of the normal distribution to the logarithm values
of the response is confirmed, so that such a normalization is completely reasonable.

After normalization of all of the SDOF response values, a vector of size 6552 (84×78) was
obtained. Corresponding to this vector, a 6552×4 matrix, including four epsilon values for each
record and each SDOF system, was considered. Similar to the above approach, the response
predictor (�) can be defined. For sensitivity analysis, too, different combinations of epsilons are
involved in the regression analysis, and the results are summarized in Table I.
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Figure 3. The correlation between the response predictors and the collapse capacity: (a) εSa as a response
predictor and (b) � as a response predictor.

Table I. Determination of the coefficients for � for different linear combinations of ε.

No. εSa εPGA εPGV εPGD �

1 1 — — — 0.43
2 — 1 — — 0.18
3 — — 1 — 0.08
4 — — — 1 0.13
5 1 −0.373 — — 0.47
6 1 — −0.823 — 0.64
7 1 — — −0.676 0.54
8 1 0.123 −0.958 — 0.65
9 1 −0.289 — −0.540 0.56
10 1 0.186 −1.016 0.057 0.65

Table II. Median values of b and �, versus the bootstrapped standard error
and the 95% confidence interval.

Median Standard error 95% confidence interval

b 0.823 0.012 [0.791, 0.845]
� 0.65 0.01 [0.63, 0.66]

The last case, which involves all of the epsilons, provides, as shown in Table I, the most
efficient response predictor, with �=0.65. However, it can be seen that the efficiency of the dual
combination of εSa and εPGV (the sixth item in Table I) is approximately equal to that of the last
combination. Thus, a simple definition of the parameter � can be introduced as:

�=εSa−bεPGV, b=0.823 (4)

The bootstrap method was used to analyze how significant the resulted regression coefficient is
[18]. The application of the bootstrap method involves sampling with replacement from the 6552
(84×78) data-points to generate an arbitrary number of alternate data-points, and apply GA to
find the optimum value of b so that a maximum value of � is obtained in each case. From such
samples of estimates, it is easy to calculate the standard error and the confidence intervals for both
values of b and �. The standard error and the 95% bootstrap confidence interval for b, and for �,
are shown in Table II.
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Figure 4. Comparison of the efficiency of � and εSa as response predictors: (a) correlation of the response
and � (b) correlation of the response and εSa.

It is clear that the used data-points provide a relatively accurate model for the parameter �, since
the median values of b and � show only a small dispersion.

As an interesting result in Table I, εPGV is a poor predictor of non-linear response when it used
alone, but when it is combined with εSa the resulting combination provides a good predictor of the
non-linear response. It is worth emphasizing that the epsilons should, in this case, be combined
with opposite signs in order to construct the best predictor of the non-linear response. Recalling
that εIM is related to the logarithm of IM for a given GMR, this phenomenon can be interpreted as
the parameter � is related to the ratio Sa(T1)/PGV. Consequently, this ratio can be accounted as an
indicator of elastic spectral shape, which is in agreement with the previous findings that express
that the PGA/PGV ratio is related to the frequency content of GMRs [19, 20]. As a result, for
two GMRs with similar εSa, the record with the higher εPGV is expected to provide lower collapse
capacity and vice versa.

Figures 4(a) and (b) show, respectively, the correlation coefficient between the parameters � and
εSa and the non-linear response for all of the investigated SDOF systems. The parameter � is a
more robust predictor of response as shown in Figure 4, with an average of a 50% improvement
in the correlation coefficient.

The improved efficiency of � as a response predictor may be due to the fact that � is a better
indicator of the spectral shape than εSa. This hypothesis is demonstrated in Figure 5. The GMRs
were sorted based on the εSa value and also based on �, and then two higher and lower subsets
with N elements were selected from each sorted list. The mean of the response spectra of both
subsets were then plotted, so that the left-hand figures are based on εSa sorting and the right-hand
figures are based on �-based sorting. Two subsets with size 8, as shown in Figure 5(a), result
in different spectral shapes. This finding is similar to the results obtained in other studies (i.e.
[6]). The procedure is repeated for � filtration in Figure 5(b). The difference between two resulted
spectra is more significant for the �-filtration case in comparison with the εSa-filtration approach.
This analysis was repeated for a selection of 16 records, and the corresponding results are shown
in Figures 5(c) and (d), for each of the filtration approaches. This case fully confirms the better
ability of � to make a distinction between records with different spectral shapes.

The � values classify the response spectrum in both the higher and lower periods, as shown
in Figure 5, although this approach is based on the analysis of the non-linear response of the
investigated SDOF systems. The �-filtration approach thus provides reliable GMRs even in the
case of MDOF structures with considerable effects of higher modes.
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Figure 5. Comparison of � and εSa as indicators of spectral shape (a), (b) selection of
8 ground motions with highest/lowest values of � and εSa and (c), (d) selection of 16

ground motions with highest/lowest values of � and εSa.

4. DETERMINATION OF THE TARGET ETA FOR DIFFERENT HAZARD LEVELS

A practical challenge faced when using � for record selection is the choice of target epsilons.
Ground-motion prediction models predict the probability distributions of IMs for a specified
earthquake event. These models provide only marginal distributions, but they do not specify
correlations among differing IMs. On the other hand, standard hazard disaggregation analysis only
provides the target εSa, but the target εPGV is still undetermined. Assuming equal values for epsilons
may be challengeable since equal epsilons may not necessarily correspond to a particular hazard
level. The correlation between εPGV and εSa in different period ranges is studied in this section,
and linear regression is implemented in order to develop an analytical equation for the evaluation
of εPGV for a given εSa.

The results presented in this section were derived empirically from a strong ground motion
records (SGMRs) data set based on worldwide recordings of shallow crustal earthquakes. This
set, which was used by Baker and Cornell [21] to analyze the correlation of response spectral
values, includes 267 pairs of horizontal GMRs with magnitudes greater than 5.5 and source-to-site
distances of less than 100 km. The other selection criteria, as well as the detailed documentation
about this set, are given in [5].

Figure 6(a) shows the correlation coefficient between εPGV and εSa for different periods. The
parameter εPGV is not enough correlated, as shown in Figure 6(a), with εSa in lower periods; hence,
the periods less than 0.25 s are neglected from the correlation analysis, as a rational judgment.

The correlation between εPGV and εSa can be represented by the following model:

εPGV=c0+c1εSa (5)

Figure 6(b) shows the correlation analysis results for periods 0.5, 1.0 and 2.0 s. Because the three
fitted lines have slopes that are roughly similar, it seems that there is not any meaningful difference
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Figure 6. Analysis of covariance of εPGV and εSa: (a) the correlation coefficient versus
period; (b) the fitted lines for three different periods; (c) the regression analysis for different

periods; and (d) the final regression analysis for total periods.

between the different fitted lines. This analysis is repeated for all period with the range of 0.25–
3.0 s in Figure 6(c). The evidence of dependency of regression coefficients to the period was tested
by implementing the analysis of covariance, as a well-known statistical tool. The F statistic was
employed to test the null hypothesis (NH) that the regression models are similar, and rejection of
the NH is taken to indicate the dependency of fitted lines to period. The risk of type I error (the
probability of rejecting the NH when it is true) is given by �, which was taken to be 0.05, and the
smallest fixed level at which this occurs is p, the observed level of significance. If p<�, then the
NH is rejected at the 0.05 significance level. With a p-value of 0.50, there is not enough evidence
to reject the NH (see details of analysis of covariance in [22]). Therefore, it is sensible to employ
all of periods in order to develop a unique equation for prediction of εPGV from εSa. Figure 6(d)
shows εPGV versus εSa for the considered data-points. The overall linear regression analysis results
in:

c0=0.24 [0.23–0.26], c1=0.72 [0.70–0.73]

The bracketed values indicate 95% confidence intervals, which are calculated from standard statis-
tics [22]. The correlation coefficient between εSa and εPGV, and the associated 95% confidence
interval, are estimated as:

�=0.80 [0.79–0.82]

A direct method to account for the target � in structural collapse assessment is to determine the
expected εPGV value from Equation (5) for any considered hazard level, then to calculate the target
� from Equation (4) and finally, to select the ground motions that are consistent with the target �.
For the purposes of simplicity, Equation (4) can be revised to normalize the target � values to the
target εSa values, as described as follows:

�=k0+k1(εSa−bεPGV) (6)
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It is clear that, due to the linear correlation between the � values and the structural response, this
adjustment is permissible. Now, by substituting εPGV from Equation (5) into Equation (6), and
considering the target � to be equal to the target εSa, k0,k1 can be determined as:

k0= bc0
1−bc1

=0.472, k1= 1

1−bc1
=2.730

By replacing the above constant values in Equation (6), the final form of � is obtained as:

�=0.472+2.730εSa−2.247εPGV (7)

The target � value can now be considered to be equal to the target εSa that is achievable from the
disaggregation analysis. It should be noted that the application domain of the �-filtration approach
is limited to periods from 0.25 to 3.0 s. In the following section, an �-based selection of ground
motion records is presented for the collapse simulation of an MDOF structure.

5. EXAMPLE: COLLAPSE CAPACITY ASSESSMENT OF AN MDOF STRUCTURE

In this section, the seismic collapse capacity of an MDOF test structure based on an �-based record
selection is discussed. The considered structure is an eight-story reinforced concrete building with
special moment-resisting frames. The building is 36.5×36.5m in plan, uses a 3-bay perimeter
frame system with a spacing of 6.1m, and has a fundamental period (T1) of 1.71 s. This building
is ID 1011 from [15]. The mathematical model of this structure that was created [15] within the
OpenSees program [23] was used in this section. It was assumed that this structure is located at an
idealized site where the ground motion hazard is dominated by a single characteristic event with
a return period of 200 years, Mw=7.2, R=11.0km and Vs_30=360m/s.

From the basic probability theory, the annual frequency of exceedance (�) for ln Sa(T )>x can
be written as:

�[ln Sa(T )>x]=�0P[ln Sa(T )>x |Mw, R] (8)

where �0 is the annual frequency of the earthquake, which is in this case equal to 1
200 . First, x is

taken equal to the value predicted by the attenuation relation (ln Sa(T )), which corresponds to the
zero epsilon value:

�[ln Sa(T )>ln Sa(T )]=�0P[ln Sa(T )>ln Sa(T )|Mw, R]= 1
200 ×0.50

Assuming a normal distribution for ln Sa(T ), Equation (8) can be re-written for εSa=0.80 as:

�[ln Sa(T )>ln Sa(T )+0.80�]=�0P[ln Sa(T )>ln Sa(T )+0.80�|Mw, R]= 1

200
×0.21

Considering that 1
200 ×0.21= 1

475 ×0.50, it is a reasonable to infer that εSa=0.80 is equivalent to
an event with a return period of 475 years. Using this approach, the target epsilons for different
hazard levels are given in Table III.

The GMRs bin that was introduced previously is appropriate for this site. The magnitude–
distance distribution of this bin, which is shown in Appendix A, confirms its consistency with

Table III. The target parameters for different hazard levels.

Return period (year) Probability in 50 years (%) Target epsilon

125 33 −0.80
200 22 0.00
475 10 +0.80
2475 2 +1.75
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Table IV. Mean collapse capacities of the structure based on εSa and �-filtration.

Return period (year) εSa-based, Sa(T =1.71s) �-based, Sa(T =1.71s)

125 0.53 0.57
200 0.56 0.69
475 0.76 0.84
2475 0.97 0.99

Figure 7. The fragility curves for different hazard levels: (a) a return period of 125 years; (b) a return
period of 200 years; (c) a return period of 475 years; and (d) a return period of 2475 years.

the assumed earthquake scenario. For each hazard level, 20 GMRs were selected using both �-
filtration and εSa-filtration procedures. The mean collapse capacity of the structure for each of the
ground motion sets was calculated, and the results are shown in Table IV. It can be seen that the
two different filtration approaches result in two distinct mean collapse capacities for some of the
considered hazard levels. The resulting fragility curves for different hazard levels are shown in
Figure 7, where the differences between the εSa and � filtrations are, in the case of some of the
epsilons, significant, whereas in the case of the remaining epsilons they are not significant.

In order to study further the influence of � filtration, the ground motion selection was performed
for a relatively wide range of hazard levels. The results are shown in Figure 8(a), compared with the
results obtained by εSa filtration. A standard hypothesis test [22] was implemented for each discrete
εSa in order to determine whether or not this difference is meaningful. The NH is the equality of
the two means. Figure 8(b) shows the resulting p-value for each εSa value. By assuming a common
significant level (i.e. 0.05), as shown in Figure 8(b), the NH can be rejected for εSa=0,0.25,0.5.
It can therefore be concluded that a record selection based on � filtration may, at some hazard
levels, lead to quite different results to those obtained by convenient εSa filtration.

For further investigation, the mean annual frequency (MAF) of collapse was computed based
on each of the filtration approaches. Figure 9(a) shows the hazard curve for the assumed site.
The MAF of collapse due to Sa(T =1.71s)= x is shown in Figure 9(b), for both record-selection
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Figure 8. Mean collapse capacity of the MDOF structure based on εSa and � filtration: (a) the difference
between the two filtration approaches at difference levels of epsilon and (b) the results of the statistical

hypothesis test for the equality of collapse capacity based on the two filtration approaches.

Figure 9. The effect of different filtration approaches in the MAF analysis: (a) the hazard curve and (b)
the MAF of collapse due to Sa(T =1.71s)= x .

methods. The MAF of collapse is also shown in Figure 9(b) for the case when all the records were
used (without any filtration). The MAF of collapse is less for εSa-filtration in comparison with the
no-filtration approach, which has also been addressed by other studies (e.g. [6]). Also this figure
shows that the MAF of collapse for �-filtration is remarkably lower than that for the εSa-filtration.
The absolute value of MAF, calculated by integrating MAF over Sa , was 6.4×10−5, 3.6×10−5

and 1.8×10−5 for the no-filtration, εSa-filtration and �-filtration approaches, respectively.
It is worth emphasizing that the greater reliability of the � approach for the selection of records

was inferred due to the better correlation between this parameter and the structural non-linear
response, comparing with εSa (see Figure 4), and also due to the better indication of the elastic
spectral shape as seen in Figure 5. Stochastic simulation of GMRs can be applied as a practical
approach to explicitly verify the results (see the fundamental aspects of stochastic record simulation
in [24]). However, as mentioned by Tothong [10], the correlation of response spectral values
for simulated records differs from that of those corresponding to recorded far-field GMRs. The
correlation of response spectra for a particular period among the neighboring period values in
recorded GMRs decreases gradually, so that this trend is quite different in simulated GMRs [10].
As a consequence, at a particular period neither εSa nor � signify the trend of the spectral shape
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for the simulated records. Therefore, an explicit verification of the efficiency of � is not feasible
through common simulation approaches. Modification of this conceptual limitation of simulated
records is open for future studies.

6. CONCLUSIONS

As a predictor of non-linear response, the parameter εSa is an efficient parameter that can be
used to reduce bias in the structural non-linear response. In order to improve the reliability of
the record-selection procedure, a new parameter named eta (�) has been proposed as a linear
combination of εSa and εPGV. It was shown that the correlation between � and the non-linear
response is about 50% better than the correlation between εSa and the response. It has also been
shown that the parameter � is a better indicator of spectral shape compared with the parameter
εSa. Based on the results of regression analysis, an equation has been proposed for the prediction
of the target εPGV based on a given εSa. The influence of the parameter � on the collapse capacity
assessment of an 8-story reinforced concrete building with special moment-resisting frames was
investigated. The results showed that, at some hazard levels, the difference in the collapse capacity
of structure resulting from � and εSa filtration is meaningful. Also, the absolute MAF of collapse
for the �-filtration approach is remarkably lower than that corresponding to εSa-filtration.

APPENDIX A

Figure A1 shows the magnitude–distance distribution as well as the response acceleration of the
SGMRs that were used to investigate the influence of εSa on non-linear response. These records’
bin was also used to propose the parameter � as a response predictor (Equation (3)).

The seismic collapse capacity database was established for 84 SDOF systems with a period
range of 0.1–2.0 s (T =0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.25, 1.5, 1.75 and 2.0), six
ductility values (� f =2, 4, 6, 8, 10 and 12), and a mass proportional critical damping ratio equal
to 5%. A tri-linear backbone curve model with zero hardening slope (�s=0) and fixed capping
ductility (�c=0.9�f), as shown in Figure A2(a), was selected. P−� effects and cyclic deterioration
were neglected, for the purpose of simplicity. Seismic collapse capacity analysis of 14×6 SDOF
systems, for 78 records, was used to create a 84×78 matrix of the collapse capacity data for
statistical analysis. Sa(T,5%) was used as the IM for the seismic collapse capacity assessment. The
collapse capacity tracing procedure is presented in Figure A2(a) for an arbitrarily selected SDOF

Figure A1. The SGMR’s database: (a) the magnitude–distance distribution and (b) the
acceleration response spectrum with 5% damping ratio.
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Figure A2. The seismic collapse capacity points in the IDA curves for an arbitrarily selected SDOF system
and for the 78 GMRs where (a) an IM corresponding to a ductility equal to 4 is indicated, and (b) fitted

by a log-normal distribution to the probability density function of the collapse capacity points.

system and for the 78 GMRs. The application of the Kolmogorov–Smirnov test [22] to the collapse
capacity values of each SDOF system, as shown in Figure A2(b), confirmed the goodness of fitness
of a normal distribution to the logarithm of the collapse capacity IM values. The minimum, average
and maximum p-values for the considered SDOF systems in the Kolmogorov–Smirnov test are
equal to, respectively, 0.17, 0.67 and 0.99.
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