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SUMMARY

How to select a limited number of strong ground motion records (SGMRs) is an important challenge
for the seismic collapse capacity assessment of structures. The collapse capacity is considered as the
ground motion intensity measure corresponding to the drift-related dynamic instability in the structural
system. The goal of this paper is to select, from a general set of SGMRs, a small number of subsets
such that each can be used for the reliable prediction of the mean collapse capacity of a particular
group of structures, i.e. of single degree-of-freedom systems with a typical behaviour range. In order
to achieve this goal, multivariate statistical analysis is first applied, to determine what degree of simi-
larity exists between each selected small subset and the general set of SGMRs. Principal Component
analysis is applied to identify the best way to group structures, resulting in a minimum number of
SGMRs in a proposed subset. The structures were classified into six groups, and for each group a subset
of eight SGMRs has been proposed. The methodology has been validated by analysing a first-mode-
dominated three-storey-reinforced concrete structure by means of the proposed subsets, as well as the
general set of SGMRs. The results of this analysis show that the mean seismic collapse capacity can be
predicted by the proposed subsets with less dispersion than by the recently developed improved approach,
which is based on scaling the response spectra of the records to match the conditional mean spectrum.
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1. INTRODUCTION

The seismic collapse of a structural system is one of the most important causes for the loss of life
during and after a severe ground motion. Hence, quantification of the collapse potential of existing
and newly designed structures is an important issue in performance-based earthquake engineering.
Incremental dynamic analysis (IDA) is a widely used method for the estimation of the seismic
collapse capacity of structures [1]. This method requires non-linear response-history analyses of
the specific structure for an appropriate set of SGMRs, each scaled to different intensity levels, to
cover a wide range of the structural response from elastic behaviour to global instability on the
basis of an engineering demand parameter (EDP), e.g. the maximum inter-storey drift ratio.
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The SGMRs which are used for non-linear response-history analysis are usually chosen based
on magnitude, distance and site conditions [2]. As there is a lack of knowledge about future
earthquakes, it would be reasonable to use a relatively large set of SGMRs for the IDA analysis of
a specific structure. However, this target is not very realistic, so some approximate methods have
recently emerged. The approximate methods for IDA analysis usually involve the replacement of
non-linear response-history analysis by a combination of the pushover analysis of a multi-degree-of-
freedom (MDOF) model and a non-linear response-history analysis of a single degree-of-freedom
(SDOF) model [3–5].

One of the challenges in the non-linear response-history analysis of sophisticated structural
models is how to select a limited number of SGMRs. The selection of appropriate SGMRs needs
to be performed with the goal of accurately estimating the response of a structure to a specified
ground motion Intensity Measure (IM), as measured by the spectral acceleration corresponding to
the first mode period of the structure, Sa(T1). The current code-based method of record selection
(e.g. [6]) is based on a consideration of the magnitude and distance of the SGMRs, while matching
the mean response spectrum to the uniform hazard spectrum (UHS) as a target spectrum. Based
on this approach, some methods have been developed for the selection and scaling of a set of
near-optimal records from a large database [7, 8]. As no single earthquake is likely to produce a
spectrum as high as the UHS spectrum, the code-based procedure for record selection is usually
conservatively biased [9–11]. Reduction of this bias and the variance of the resulting structural
response can be achieved by considering the spectral shape in the record selection [11]. It has been
demonstrated that spectral shape can be indicated by epsilon, which is defined as a measure of
the difference between the spectral acceleration of a record and the mean obtained from a ground
motion prediction equation at a given period [12]. It can, therefore, be concluded that one method
to account for the spectral shape effect is through the selection of a set of SGMRs that is specific to
the structure’s fundamental period and the site hazard characteristics [13]. This selection presents a
significant challenge when assessing the seismic collapse capacity of a large number of structures
or when developing a systematic procedure, since it implies the need to assemble specific ground
motion sets for each structure. An alternative method has been proposed in [13], whereby a general
set of SGMRs is used to simulate collapse, and the resulting collapse capacity is adjusted to take
into account the spectral shape effects that are not reflected in the selection of the general set. The
major difficulty of this method is that it implies the need to apply a relatively large number of
ground motion records for the collapse assessment of the structures involved.

The main object of this paper is to find a proper solution for a reduction in the number of SGMRs
needed for a non-linear response-history analysis. The proposed approach is intended to suggest
a few subsets from a general set of SGMRs, and to use each subset for the collapse simulation
of a specific structure group with a typical range of behaviour. The main criterion for selection of
each subset is the similarity of the subset to the general set for the prediction of the mean collapse
capacity of the structures belonging to the relevant structure group. It is needed to emphasize that
the collapse capacity is considered in this study as the ground motion IM corresponding to the
drift-related dynamic instability in the structural system. Other modes of collapse, such as column
shear failures, are not considered in this study. It is important to note that suggestion of subsets is
done just once, and that the selected subsets can be used a priori for the prediction of the collapse
capacity of any arbitrarily selected first-mode-dominated structure.

The first mode period and ductility are the two most important structural parameters which are
considered here for the grouping of structures. In this study, the above-mentioned structural systems
were modelled by means of simplified SDOF mathematical models. The application of simplified
models (e.g. SDOF systems) for the selection of suitable SGMRs for the analysis of sophisticated
structures was dealt with in previous investigations [14, 15]. By considering reasonable combi-
nations of the structural parameters, a bank of non-linear SDOF models has been established,
representing different realistic structures. The collapse capacity assessment of the considered SDOF
bank of models results in a collapse capacity matrix, with the use of an appropriate general set of
SGMRs, for further statistical analysis. Grouping of the SDOF models, together with the selection
of the associated SGMR subsets, is performed by PC (‘Principal Components’) analysis of the
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collapse capacity matrix, and the application of a Genetic Algorithm (GA) to find the near-optimal
subsets. The details of the proposed methodology are described in the following section.

2. METHODOLOGY

As the non-linear response-history analysis of a particular structure is a time-consuming task, the
selection of a subset of SGMRs of smaller size which can reproduce the general SGMR set response
is a valuable objective. The general SGMR set can be chosen from a catalogue [6]. The second
set of SGMRs, which is hereafter called a subset, can be selected from the general SGMR set, but
has a smaller number of SGMRs. Each general set or subset of SGMRs can be used to predict the
mean value of the structural seismic collapse capacity, based on a characteristic probability density
function. Thus, the similarity of the structural seismic collapse capacity response, based on the
two different SGMR sets, can be measured by comparing the corresponding probability density
functions. For this purpose, Figure 1 summarizes the main features of the proposed methodology
as follows:

1. Select a general set of SGMRs which is suitable for collapse capacity analysis of structures.
2. Analyse different combinations of SDOF models for the general SGMRs set in order to

provide an appropriate collapse capacity database for statistical analysis.
3. Apply a statistical measurement to compare the similarity of two sets of SGMRs for collapse

capacity analysis of a given structure group.
4. Apply the PC analysis in order to identify the best way to group the structures that results

in a minimum number of SGMRs in a proposed subset.
5. Use GA, as an efficient optimization method, to find the optimal subsets corresponding to

the structure groups.
6. Use the corresponding subsets a priori for the engineering purposes.

Now, after presenting the three important issues in the proposed methodology, the complete proce-
dure is implemented for a general set in Section 3.

1. A multivariate statistical approach is presented whose aim is to quantify the similarity of the
general SGMR set to a given subset for the mean collapse capacity assessment of a structure
group.

2. An optimization approach is used to select near-optimal subsets of SGMRs for any given
structure group.

Figure 1. The main features of the proposed methodology.
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Figure 2. Definition of the two similarity indices for the univariate case.

3. As an increase in the size of a structure group results in a significant increase in the size of
the associated subset of SGMRs, PC analysis is applied to limit this size.

2.1. Quantification of the similarity of two sets of SGMRs

Assume that a statistical sample of structural seismic collapse capacities in terms of an IM is
available, based on a set of non-linear response-history analyses, for a particular SDOF system.
Estimation of the distribution of the population mean and its confidence bounds can be performed by
using the t-Student distribution function [16], by assuming a normal distribution for the logarithm
of the seismic collapse capacity values. Assuming that X1, X2, . . . , Xn are samples from a normal
population with the mean �x , the confidence interval for �x can be defined as [16]

X − tn−1(�/2t)
sx√

n
��x�X + tn−1(�/2)

sx√
n

(1)

where X̄ , sx are, respectively, the mean and the standard deviation of the samples, n is the size
of the sample space and tn−1(�/2) is the upper 100(�/2)th percentile of the t-distribution function
with n−1 degrees of freedom. Now assume that X1, X2, . . . , Xn and Y1,Y2, . . . ,Ym are samples
from a population which are called, respectively, the general set and the subset. Based on Equation
(1), two plausible ranges can be defined for the population mean by considering a 99% confidence
interval (�=0.01). The degree of similarity of the two mean values can be quantified by defining
two similarity indices. The first index, S1, is the probability that the population mean determined
from the general set falls into the plausible range of the mean which is obtained from the subset.
The second similarity index, S2, is defined as the probability that the population mean determined
from the subset falls into the plausible range of the mean obtained from the general set. The
similarity indices are computed, as shown in Figure 2, by integrating the related probability density
functions over the associated ranges.

The above-described approach for the assessment of the similarity of two sets of SGMRs
can be extended to apply to an analysis of a set of SDOF systems categorized as a structure
group. For this purpose, the univariate case, as shown in Figure 2, can be developed into the
multivariate case by using the multivariate statistical analysis technique. Assume that a group of
p SDOF systems is analysed for n SGMRs. The seismic collapse capacities of the structures
are calculated, consequently, as 〈X1

1, X2
1, . . . , X p

1 〉, 〈X1
2, X2

2, . . . , X p
2 〉, . . . , 〈X1

n, X2
n, . . . , X p

n 〉 which
define a p-dimensional statistical sample from a population with a p×1 mean vector �x and a
p× p covariance matrix. A 100(1−�)% joint confidence interval for the mean of the population
can be defined by the following Equation [17]:

n(X −�x )T(Sx )−1(X −�x )<
(n−1)p

(n− p)
Fp,n−p(�) (2)
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Figure 3. The different confidence regions for a two-dimensional statistical sample.

where X , Sx are, respectively, the mean vector and the covariance matrix of the sample. Fp,n−p
denotes a random variable with an F-distribution with p and n− p degrees of freedom. The
designation ()T indicates a transposed matrix or vector. Some aspects of the multivariate analysis can
be reflected by plotting the associated confidence regions. As an example, the different confidence
regions are shown schematically, for a given p=2 dimensional sample, in Figure 3.

The orientation of the confidence ellipses is proof of the correlation between the variables,
i.e. between the structural seismic collapse capacities. So it is a reasonable inference that the
p-correlated variables must be analysed jointly, which is a key aspect of multivariate statistical
analysis [17]. The similarity of the two sets of SGMRs for a structure group of size p can be
quantified by extending the previously defined similarity indices to the multivariate case. For this
purpose, it is necessary to evaluate the joint probability density function of the mean of the structure
group capacity for each of the SGMR sets, and then calculate the p-dimensional volume below
each function with a 99% confidence region of the other set.

As a well-known approach, the similarity of the general set mean with the subset mean can be
evaluated by applying the standard statistical hypothesis test [16]. The null hypothesis is defined
as the equality of the two means, and the alternative test defines the difference between them.
This test is generally performed to a characteristic significant level, i.e. 0.01. This significant level
is generally interpreted as the first type of error which is defined as the probability of the false
rejection of the null hypothesis. This hypothesis test has enough strength for the rejection of the
null hypothesis, but cannot systematically quantify the similarity of two means. This imperfection
can be resolved by use of the second type of error. For this purpose, a reasonable value for
the difference of the means can be defined as an alternative hypothesis, and consequently the
probability of the false acceptance of the null hypothesis can be calculated. The optimal subsets
can be found by minimizing the second type of error. The similarity indices that are defined in this
paper are different from the above-mentioned types of error, but still have a common terminology
and may be comparable. The advantage of the similarity indices which are used in this paper is
that there is no need to define a reasonable value for the difference of the means which makes
them convenient for the similarity assessment of the means.

2.2. Selection of a near-optimal SGMR subset

The near-optimal subset of SGMRs can be selected from the general SGMR set by maximizing
the similarity indices. Here, GA, as an efficient optimization search algorithm, is applied [18, 19].
The advantage of GA is that there is a high probability that the objective function converges to
near the global optimum of the problem, and not to a local optimum, which is not always the case
for gradient-based searching techniques [18].

Generally, by increasing the size of the subset, the similarity indices will increase. On the other
hand, by limiting the minimum value of the similarity indices to 90%, the minimum size of the
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Figure 4. The mean values and corresponding confidence intervals for the general set and a subset of
SGMRs for the two-dimensional problem.

subset can be calculated. For example, for the dataset used in Figure 4, the minimum number of
SGMRs in the subset that guarantees similarity indices of at least 90% is 6. The selected subset
and the corresponding confidence region are shown in Figure 4.

It follows from Equation (2) that, for a structure group of sizep, at least (p+1) records are
needed for the subset. Hence, the size of the subset will increase significantly when the size of the
structure group is increased. In the following section, a statistical solution is proposed in order to
obtain a solution to this problem.

2.3. Reduction in the size of the SGMR subset by PC analysis

One of the most important inherent difficulties in the above-mentioned procedure for the selection
of the SGMR subset for a structure group is the growth in the size of the SGMR subset in the case
of an increase in the size of the structure group. Dimension reduction, which is a key feature of
multivariate statistical analysis, can be performed in order to try to find a solution to this problem.
Whether or not dimension reduction can be effectively applied depends strongly on the variance–
covariance arrangement of the considered data. For example, if the response of two structures is
highly correlated, it is possible to reduce the dimensions of the problem from two to one. Such
a dimension reduction leads to a reduction in the number of SGMRs needed in the subset. On
the other hand, the possibility of reducing the number of SGMRs will decrease if the considered
correlation is low.

The PC analysis is a systematic approach which can be used to explain the variance–covariance
arrangement of p random variables, and to reduce the problem dimension [17]. The PC analysis
method transforms the current set of variables into a new set, called PCs. The PCs are weighted
combinations of the original variables, and represent the same data in an aggregated form. Some
of the aspects of PC analysis are summarized below.

1. Each PC is a linear combination of the original variables, and all the PCs are orthogonal to
one another.

2. Mathematically, PC analysis is equivalent to eigen-value analysis of the covariance of the
data matrix.

3. The first few PCs usually represent the majority of the total variation in the original variables.
4. The importance of each PC is measured based on its respective variation. The problem

dimension can be reduced by neglecting the less important PCs, with the least amount missing
from the inherent information.

The role of PC analysis in the reduction of the subset size is shown in Figure 5. A high correlation
between the two variables, as seen in Figure 5(a), makes it possible to reduce the dimensions of
the data-set. The transformed data is shown in Figure 5(b), which confirms the independence of
the PCs. The first PC, as seen in Figure 5(c), contains 95% of the total variation in the data, so
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Figure 5. The role of PC analysis in reduction of subset size: (a) a high correlation between the two
variables can be observed; (b) the transformed data confirm the independency of the PCs; (c) the first PC
contains 95% of the required information and (d) there is good agreement between the probability density

functions corresponding to the general and the subset.

that neglecting the second PC is a rational decision. In this case, only three data points are needed
to supply the minimum 90% of the similarity indices (compared to the six SGMRs, as presented
in Section 2.2). The similarity indices, as well as the probability density functions, are presented,
for the general set and for the subset of SGMRs, in Figure 5(d). The good agreement between the
probability density functions, associated with the general set and the near-optimal subset, confirms
that the use of the first PC results in a reduction in the minimum size of the subset from 6 to 3.

The reduction in the problem dimensions will clearly result in the minimum size of the subset
of SGMRs. On the other hand, the missing inherent information of the initial data, which occurs if
the higher PCs are neglected, should be limited. The minimum number of PCs which are needed
to provide at least 90% of the total variation from the general set has been considered in this study.
It is clear that due to this condition, a smaller number of considered PCs for a structure group
results in a corresponding subset of smaller size. For this reason PC analysis can provide valuable
information about the minimum size of a subset corresponding to a given structure group. As a
result, PC analysis is an efficient tool which can be used to identify the best pattern for grouping
structures, which results in the minimum size of the proposed subsets of SGMRs.

3. SELECTION OF SGMR SUBSETS FROM THE GENERAL SET USED
IN THE ATC63 PROJECT

The proposed methodology was applied to a specific far-field set consisting of 44 SGMRs. This
general set was used in the Applied Technology Council Project (FEMA 2008) as a proce-
dure to validate the provisions for seismic structural design [20]. Detailed information about the
SGMRs, as well as the complete list of selection criteria, are provided in [21]. Figure 6 shows the
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Figure 6. (a) The magnitude–distance distribution and (b) the 5% damped acceleration response spectra
of the general set of SGMRs.

magnitude–distance distribution, as well as the 5% damped acceleration response spectra of the
general set.

As already mentioned, the main aim of this paper is to suggest a few small subsets from this
general set for the analysis of different structure groups. Also, in order to validate the independence
of the grouping of structures from the applied set of SGMRs, another set of SGMRs was used to
study this issue. The second set of SGMRs includes 192 records, and is documented in [22].

3.1. Seismic collapse capacity database for SDOF systems

A seismic collapse capacity database was established for 84 SDOF systems with periods ranging
between 0.1 and 2.0 s (T =0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.25, 1.5, 1.75 and 2.0),
six ductility values (� f =2, 4, 6, 8, 10 and 12) and a mass proportional critical damping ratio
equal to 5%. A tri-linear backbone curve model with a zero hardening slope (�s =0) and fixed
capping ductility (� f =0.9� f ), as shown in Figure 7(a), was selected. P −� effects and cyclic
deterioration were neglected for the purpose of simplicity, although these non-linear effects could
have an influence on the seismic collapse capacity [23].

Based on an analysis of the seismic collapse capacity of 14×6 SDOF systems, and taking into
account 44 records of the general set, an 84×44 matrix of collapse capacity data was created for
the statistical analysis. The seismic collapse capacity of a particular SDOF system was determined
using the Hunt and Fill tracing algorithm [1] for each of the 44 SGMRs. Sa(T,5%) was used as
the IM for this seismic collapse capacity assessment. The collapse capacity tracing procedure is
presented in Figure 7(a) for an arbitrary SDOF system and for the 44 SGMRs. The application of
the Kolmogorov–Smirnov [16] test to the collapse capacity values corresponding to each SDOF
system, as shown in Figure 7(b), confirmed the goodness of fit of a normal distribution to the
logarithm of the collapse capacity IM values. The minimum, average and maximum p-values for
the considered SDOF systems in the Kolmogorov–Smirnov test were equal to 0.17, 0.67 and 0.99,
respectively. The p-value indicates the smallest level of significance that would lead to rejection
of the null hypothesis, i.e. fitness of the normal distribution to the collapse capacity values of a
considered SDOF. It would take p-value lower than 0.05 to cast doubt on the null hypothesis.

3.2. Analysis of different patterns for the grouping of structures

First, the SDOF systems were grouped, based on their periods, with varying ductility (� f ).
The SDOF seismic collapse capacity response can be summarized in a 44×6 matrix for each
SDOF system with a particular period value, which reflects the seismic collapse capacity IMs
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Figure 7. (a) The seismic collapse capacity points in the IDA curves for an SDOF system and 44 SGMRs
and (b) the log-normal curve fitted to the probability density function of the collapse capacity points.

corresponding to the 44 SGMRs and six ductility values. The results of the PC analysis confirmed
that the first PC is dominant, which means that the first PC includes a considerable proportion of
the inherent information located in the related data matrix. Figure 8 shows the results for the group
of structures with a period of 0.9 s. The IMs corresponding to the SDOF seismic collapse capacity
for two different ductility values (4 and 10) are shown in Figure 8(a). A high correlation can be
observed in the response, which confirms the high influence of the first PC, shown in Figure 8(b).
The first and the second PCs contain, respectively, 80 and 15% of the total variation. By consid-
ering the first two PCs for the near-optimal record selection, as shown in Figure 8(c), only six
SGMRs are required to satisfy the similarity indices criterion (at least 90%). However, by using
only the first PC, three SGMRs can be found which provide similarity indices of up to 98%
(Figure 8(d)). On the other hand, if the first three PCs are taken into account, at least 16 records
should be used to satisfy the similarity indices criterion. This trend shows that taking the upper
PCs into account may result in a substantial increase in the minimum size of the corresponding
SGMR subset.

The percentage of the total variance for the first three PCs is summarized in Table I for 14
different groups of structures, each group containing structures with the same period value. The
results, which are shown in the second column of Table I, indicate the minimum number of SGMRs
that need to be used for the prediction of the IM corresponding to the seismic collapse capacity
with a high level of similarity indices and independent of the ductility values. It can be concluded
that, for an acceptable value of the similarity indices (e.g. 90%), only three to eight SGMRs are
needed for the reliable assessment of the mean IM of the seismic collapse capacity of all structures
having the same period, independent of their ductility values.

In order to estimate the possibility of grouping structures together, based on their ductility, the
84 SDOF systems were grouped into six categories. A 44×14 matrix contains the seismic collapse
capacity IMs corresponding to the 44 SGMRs and 14 period values for each of the six groups
of structures. The results of the PC analysis for the different groups of structures, with ductilities
equal to 4 and 10, as shown in Figure 9, indicate that the variance fraction of the first PC is less
than 40% of the total variance. Also, at least eight PCs need to be taken into account in order to
cover 90% of the total variation. This grouping pattern is not convenient for reducing the required
number of SGMRs. In other words, the estimation of the mean IM of the seismic collapse capacity
by a limited number of SGMRs depends strongly on the period of the structure. For clarification,
the three to eight SGMRs that were proposed for each of the period-based structure groups need
to be recalled. A second similarity index, corresponding to each of the 14 structure groups, was
calculated, as shown in Table II, based on all of the subsets in Table I, in order to determine
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Figure 8. The subset of SGMRs for structure groups with similar periods and different ductility values: (a)
high correlation can be observed between the structural seismic collapse capacities; (b) the contribution
of different PCs to the period-based grouping; (c) the subset of SGMRs based on the two first PCs; and

(d) the subset of SGMRs based on the first PC.

Table I. The relationship between the considered PCs and the minimum number of required SGMRs.

Variation explained by the PCs (%) Minimum size of the subsets

Period First PC Second PC Third PC Use of 1 PC Use of 2 PCs Use of 3 PCs

0.1 94.7 4.3 0.8 3 6 14
0.2 93.9 4.7 1.1 3 8 16
0.3 91.1 6.2 1.9 3 6 16
0.4 86.7 9.4 2.9 3 6 16
0.5 90.1 6.8 1.9 3 6 14
0.6 84.6 10.8 3.5 3 6 18
0.7 91.2 4.8 2.6 3 6 16
0.8 83.1 9.2 5.7 3 6 18
0.9 78.8 12.9 5.8 3 6 16
1.0 74.4 18.1 4.7 3 6 14
1.25 86.2 8.8 4.1 3 6 14
1.50 88.3 8.0 2.8 3 6 16
1.75 85.4 11.2 2.3 3 6 14
2.0 84.1 10.7 3.9 3 8 18

whether or not a subset of records is convenient for the other groups of structures. The results,
as seen in Table II, confirm that the selection of SGMRs strongly depends on the period of the
structure.

For engineering applications, the possibility of reducing the dependency of the record selection
process on the period of structures has been studied. For this objective, a third grouping pattern
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Figure 9. The contribution of individual PCs in the ductility-based grouping for (a) the structure group
with � f =4 and (b) the structure group with � f =10.

Table II. The minimum similarity indices achieved by using the period-based subset of SGMRs for the
different structure groups.

Period-based subsets

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14

T1 0.93 0.43 0.48 0.21 0.53 0.37 0.28 0.64 0.62 0.73 0.31 0.20 0.16 0.36
T2 0.30 0.95 0.51 0.30 0.24 0.22 0.08 0.17 0.11 0.12 0.49 0.53 0.38 0.14
T3 0.61 0.25 0.92 0.08 0.45 0.19 0.05 0.35 0.45 0.61 0.41 0.58 0.31 0.44
T4 0.11 0.02 0.53 0.92 0.54 0.37 0.10 0.25 0.15 0.11 0.07 0.21 0.36 0.24
T5 0.33 0.17 0.08 0.42 0.92 0.21 0.27 0.43 0.24 0.27 0.47 0.40 0.18 0.44
T6 0.06 0.10 0.13 0.05 0.55 0.91 0.58 0.09 0.14 0.03 0.11 0.31 0.11 0.47
T7 0.30 0.15 0.30 0.32 0.22 0.38 0.93 0.49 0.18 0.26 0.28 0.37 0.31 0.22
T8 0.14 0.13 0.40 0.18 0.23 0.44 0.28 0.91 0.41 0.48 0.12 0.02 0.02 0.00
T9 0.27 0.60 0.43 0.29 0.38 0.11 0.28 0.54 0.92 0.73 0.38 0.36 0.10 0.16
T10 0.45 0.35 0.20 0.00 0.20 0.23 0.15 0.02 0.19 0.90 0.31 0.19 0.20 0.23
T11 0.10 0.31 0.31 0.39 0.51 0.25 0.13 0.44 0.47 0.15 0.93 0.55 0.32 0.22
T12 0.36 0.03 0.05 0.24 0.06 0.51 0.19 0.24 0.11 0.26 0.17 0.90 0.26 0.28
T13 0.31 0.14 0.24 0.34 0.28 0.36 0.29 0.20 0.14 0.21 0.36 0.56 0.92 0.54
T14 0.26 0.23 0.50 0.10 0.40 0.59 0.59 0.17 0.25 0.46 0.45 0.65 0.55 0.91

was considered, based on merging of the neighbouring period-based groups of structures. The
criterion for this re-grouping was that the first and second PCs of each group cover at least 90%
of the total variation, in order to limit the number of SGMRs needed for each group. As illustrated
in Table III, based on the results of these analyses, all of the 84 SDOF systems were grouped into
six discrete groups, and eight near-optimal records were found for each group. Table IV shows the
characteristics of the SGMRs which are proposed for each of the groups described in Table III.
In the next section, the proposed SGMR subset will be applied to estimate the mean IM of the
seismic collapse capacity of a test structure, in order to investigate the efficiency of the proposed
methodology.

The dependency of the SDOF systems grouping procedure on the general set selection has
been investigated using a second general set, which was introduced in the previous section [22].
The analyses were repeated for the second general set of SGMRs, and the results are presented
in Table V. The results confirm that the grouping trend is not affected by changing the general
SGMR set.
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Table III. The near-optimal SGMRs for different period ranges.

Ground Variance Variance First Second
motion explained by explained by similarity similarity
subset Period the first PC the second PC SGM’s ID index index

I 0.1–0.3 59.6% 26.1% 3–8–14–20–21–24–27–28 0.99 0.92
II 0.3–0.5 65.4% 23.7% 2–4–10–12–20–21–23–30 0.99 0.93
III 0.5–0.7 70.9% 18.8% 1–4–6–10–12–15–17–23 0.99 0.95
IV 0.7–0.9 76.8% 12.3% 1–4–12–22–23–24–25–26 0.99 0.95
V 0.9–1.25 64.3% 24.3% 8–9–12–15–16–22–23–29 0.99 0.95
VI 1.25–2.0 69.8% 19.8% 5–7–13–15–19–23–28–31 0.99 0.92

Table IV. The SGMRs selected from the general set.

Vs_30 Campbell Joyner-Boore PGA
Event, Mw, Year ID Station, Dir (m/s) distance (km) dist. (km) (g)

Northridge, 6.7, 94 1 W Lost Cany, 000 309 12.4 11.4 0.41
2 W Lost Cany, 270 309 12.4 11.4 0.48

Hector Mine, 7.1, 99 3 Hector, 000 685 12 10.4 0.27
Imperial Valley, 6.5, 79 4 Delta, 262 275 22.5 22 0.24

5 Delta, 352 275 22.5 22 0.35
6 El Centro Array #11, 140 196 13.5 12.5 0.36
7 El Centro Array #11, 230 196 13.5 12.5 0.38

Kobe, Japan, 6.9, 95 8 Nishi-Akashi, 090 609 25.2 7.1 0.50
9 Shin-Osaka, 000 256 28.5 19.1 0.24

Kocaeli, Turkey, 7.5, 99 10 Duzce, 180 276 15.4 13.6 0.31
11 Duzce, 270 276 15.4 13.6 0.36
12 Arcelik, 000 523 13.5 10.6 0.22

Landers, 7.3, 1992 13 Yermo Fire Station, 270 354 23.8 23.6 0.24
14 Yermo Fire Station, 360 354 23.8 23.6 0.15
15 Coolwater, LN 271 20 19.7 0.28
16 Coolwater, TR 271 20 19.7 0.42

Loma Prieta, 6.9, 89 17 Capitola, 000 289 35.5 8.7 0.53
18 Capitola, 090 289 35.5 8.7 0.44
19 Gilroy Array #3, 000 350 12.8 12.2 0.56

Manjil, Iran, 7.4, 90 20 Abbar, T 724 13 12.6 0.50
Superstition Hills, 6.5, 87 21 El Centro Imp. Co. Cent, 000 192 18.5 18.2 0.36

22 Poe Road (temp), 270 208 11.7 11.2 0.45
23 Poe Road (temp), 360 208 11.7 11.2 0.30

Cape Mendocino, 7.0, 92 24 Rio Dell Overpass—FF, 270 312 14.3 7.9 0.39
25 Rio Dell Overpass—FF, 360 312 14.3 7.9 0.55

Chi-Chi, Taiwan, 7.6, 99 26 CHY101, E 259 15.5 10 0.35
27 TCU045, E 705 26.8 26 0.47
28 TCU045, N 705 26.8 26 0.51

San Fernando, 6.6, 71 29 LA—Hollywood Stor FF, 090 316 25.9 22.8 0.21
30 LA—Hollywood Stor FF, 180 316 25.9 22.8 0.17

Friuli, Italy, 6.5, 76 31 Tolmezzo, 000 425 15.8 15 0.35

4. APPLICATION OF THE PROPOSED SGMR SUBSETS FOR THE ANALYSIS OF A
MDOF TEST STRUCTURE

The test structure, as shown in Figure 10, is a three-storey asymmetric-reinforced concrete frame,
for which a pseudo-dynamic experiment was performed at full scale at the ELSA Laboratory [24].
The post-test mathematical model [25] generated within the OpenSees program [26] was used
for the analyses in this study. For simplicity, the non-linear dynamic analyses were performed by
subjecting the structure to seismic loads in the weak X direction only (Figure 10). The period of
the dominant mode shape was 0.85 s. The EDP is defined as the maximum inter-storey drift ratio of
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Table V. The results of the PC analysis for SDOF groups based on the second general set of SGMRs.

Ground Variance Variance First Second
motion explained by explained by similarity similarity
subset Period the first PC the second PC index index

I 0.1–0.3 69.3% 20.6% 0.99 0.95
II 0.3–0.5 68.4% 20.9% 0.98 0.92
III 0.5–0.7 75.4% 14.7% 0.99 0.95
IV 0.7–0.9 79.1% 11.5% 0.99 0.95
V 0.9–1.25 76.2% 14.2% 0.99 0.88
VI 1.25–2.0 83.1% 10.2% 0.99 0.94

Figure 10. The elevation (upper left) and plan (upper right) view of the test structure, showing typical
reinforcement details (bottom).

the structure. The collapse is considered here as the dynamic sidesway instability in one or several
storeys of the structural system. Other modes of collapse, such as loss of vertical load-carrying
capacity in individual structural components or progressive collapse, are not considered because
of the inadequacy of the structural models to capture such modes.

Figure 11(a) shows the EDP versus IM and the corresponding seismic collapse capacity points
of the structure obtained from the IDA analysis, using the 44 SGMRs. The implementation of the
Kolmogorov–Smirnov test to the collapse capacity values of this structure, as shown in Figure 11(b),
confirmed the goodness of fit of the normal distribution to the logarithm of the collapse capacity
IM values. The p-value for this test was 0.91.

4.1. Efficiency of the proposed SGMR subset

The first mode period of the test structure implies that subset IV of SGMRs, as described in Table III,
would be appropriate for the assessment of the mean IM of the seismic collapse capacity. In order to
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Figure 11. (a) The collapse capacity tracing algorithm for the test structure and (b) the log-normal curves
fitted to the probability density and probability distribution functions of the collapse capacity IM values.

Figure 12. Efficiency assessment of the proposed subsets: (a) the CDF of the mean value
of the seismic collapse capacity and (b) the median of the full IDA analysis using different

proposed subsets and the general set.

evaluate the efficiency of the proposed subset records, the CDF of the mean IM value of the seismic
collapse capacity based on the general SGMR set, as well as the proposed SGMR subsets (see
Table III), are shown in Figure 12(a). The CDF for the SGMR subset IV, as shown in Figure 12(a),
shows good agreement with the general records (S1 =0.99, S2 =0.95), whereas the other subsets
could not produce a good estimate for the mean IM of the seismic collapse capacity. Table VI
shows the mean values as well as the 99% confidence interval of the IM of the seismic collapse
capacity according to each subset, and the associated similarity indices. The median IDA curve
based on the general set and on each of the investigated SGMR subsets are shown in Figure 12(b).
Good agreement can be seen between the median IDA curve based on the general SGMRs and
the median IDA curve obtained from subset IV. This result is due to this fact that a large range of
ductility values have been used for the selection of the appropriate SGMR set for each structure
group.

In order to compare the efficiency of the proposed methodology with the typical spectral-based
record selection procedure, the conditional mean spectrum (CMS) [27] was used to select an
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Table VI. The accuracy achieved when using the proposed records for the estimation of the seismic
collapse capacity of the test structure compared to the other subsets.

Expected value 99% confidence interval
of seismic collapse for seismic collapse First similarity Second similarity

Ground motion class capacity capacity index index

All records 0.73 0.61–0.88 — —
I 0.60 0.40–0.90 0.99 0.48
II 0.65 0.44–0.95 0.99 0.69
III 0.80 0.47–1.35 0.99 0.67
IV 0.74 0.55–1.00 0.99 0.92
V 0.98 0.67–1.45 0.98 0.26
VI 0.89 0.46–1.71 0.99 0.47

alternative subset for analysis of the test structure. The target epsilon for the determination of the
CMS was chosen to be equal to the mean epsilon value of the general set. The individual and
mean epsilon values of the records of the general set, obtained by using [28], are shown, versus
period, in Figure 13(a). The mean value of epsilon at T =0.85s is equal to 0.24, as can be seen in
Figure 13(b). By considering an idealized site, where the ground motion hazard is dominated by
a single characteristic event of magnitude 7.0, a distance to fault of 10 km, and site soil condition
corresponding to Vs30 =360m/s, the mean spectrum was determined by using [28], and the CMS
associated with this spectrum and conditioned to the above-mentioned epsilon mean value was
calculated [27]. The mean spectrum, the mean spectrum plus 0.24 standard deviation and the
CMS have been plotted in Figure 13(c). The eight SGMRs, which are compatible with the CMS
spectrum, were calculated using the GA optimization technique [7] and are shown in Figure 13(d).
The criteria for these eight SGMRs were (1) consistency with the CMS spectrum and (2) minimum
dispersion in the period range between 0.2T and 2.0T . The second similarity index (S2) for the
resulting subset is 0.75 (compared with the subset suggested in this paper, which provides an S2
value of 0.92). The CMS-based selection procedure was repeated for different numbers of SGMRs,
and the S2 values are shown in Figure 14(a). It is clear that, as the size of subset increases, the value
of S2 also increases. A selection of 15 records, based on Figure 14(a), resulted in a value of S2
equal to 0.91. It can thus be claimed that the use of the proposed subset, containing eight records,
is equal to the use of 15 CMS-based selected records. To further demonstrate the benefits of the
proposed methodology, the random selection approach was taken into account. As shown in Figure
14(b), a large number of random subsets of size 8 were selected, and the S2 values associated
with them were determined. The median value of the resulting S2 is 0.58, with a dispersion of 0.2,
which is a lot less than the value obtained by using the CMS method or the proposed methodology.
This simulation was repeated for different numbers of SGMRs, and the median and dispersion
of the S2 values were determined, as shown in Figure 14(c). The selection of 28 random records
resulted in a median S2 value equal to 0.94, and a dispersion of 0.05. It can thus be tentatively
claimed that use of the eight proposed subsets is equivalent to the use of 15 CMS-based selected
records, or the use of 28 randomly selected records.

4.2. Discussion of the results

Reliable assessment of the mean IM of the seismic collapse capacity of the three-storey concrete
test-structure subjected to 44 SGMRs requires about 37 h of computational effort, with a 2.8 GHz
Pentium 4 processor, and 1 GB DDR RAM, which is not convenient for engineering design
purposes. The significantly smaller subset of records shown in Table III can be used, instead of
the general set which is based on the first mode period of the structure. The use of subset IV for
the test-structure provides an average of 92% for the second similarity index. This similarity index
indicates that the application of subset IV results in a low bias and low dispersion in the mean IM
of the seismic collapse capacity assessment. On the other hand, if the CMS method is used for the
selection of different compatible subsets, the resulting second similarity index is 0.75. This lower
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Figure 13. The code-based selection of SGMRs: (a) the individual and the mean of epsilon versus period
based on the Abrahamson-Silva 97 [28] attenuation relationship; (b) the probability density function of
epsilon at T =0.85 s; (c) the mean spectrum based on the general set of SGMRs as well as on the CMS

spectra and (d) the eight SGMRs which are compatible with the CMS spectrum.

value of the median of S2 demonstrates the greater reliability of the proposed subset compared to
the CMS method. It has been shown that, if results of similar reliability are to be achieved, it is
necessary to select 18 records based on the CMS method. The results also show that this efficiency
can be accomplished by random selection when the number of selected records is 28.

It should be noted that the proposed subsets were determined without any consideration of the
hazard level. As a solution for this problem, the mean IM of the seismic collapse capacity resulting
from the application of a suitable subset should be modified by use of the procedure proposed
in [13] to meet the target hazard level. This procedure is based on an adjustment of the difference
between the target epsilon value (as an indicator of the hazard level) and the mean epsilon value
of the general set using an empirical relationship.

5. CONCLUSIONS

A new approach has been proposed in this paper for the categorization of SDOF systems into
groups, and then a subset of SGMRs has been proposed for each of them. All of the presented
subsets were chosen from a general set of SGMRs, and each of them is equivalent to the general set
for the assessment of the mean IM of the seismic collapse capacity of the associated SDOF group.
The grouping features are period and ductility. For this purpose, a statistical approach is first used
to quantify the similarity of two sets of SGMRs for the assessment of the mean IM of the seismic
collapse capacity of an assumed SDOF group. Based on this approach, two similarity indices are
defined, and GA is applied in order to determine the optimal subset of SGMR for the considered
SDOF group. PC analysis is then used to explore the best pattern for grouping the SDOF systems.
The best pattern for grouping the SDOF systems is the one that results in the minimum size of the
corresponding SGMR subsets. The results of PC analysis have shown that the best selection can
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Figure 14. Comparison between randomly selected records and the CMS-based selection: (a) the second
similarity index for different sample sizes of the CMS-based selected records; (b) the second similarity
index for the use of eight randomly selected records versus different iterations; and (c) the median and

dispersion of the second similarity index for different sample sizes of randomly selected records.

be achieved by grouping the SDOF systems, based on the period feature. Taking this into account,
the range of the studied structural period values (0.1–2.0 s) has been divided into six groups, and
eight records are proposed for each group (see Table III). The results confirm the efficiency of the
presented subsets of SGMRs for the mean IM of the seismic collapse capacity assessment. Also,
the proposed subset shows good agreement with the general set for the prediction of the IM in the
full range of EDP, i.e. maximum drift.

The use of the presented subsets is more efficient than the application of the CMS-based record
selection procedure. The results obtained show that the application of the presented subset, with
eight records, is equivalent to the use of a CMS-based selected subset with 18 records.

As the proposed methodology is constrained by the SDOF models, the results are limited to
first-mode-dominated structures. Investigation of higher mode effects and other factors is open to
future research. The current study is also limited to the prediction of the mean seismic collapse
capacity. An extension of this study to evaluate the variance of structural capacity could be valuable
for the development of the damage assessment of different structures.
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