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ABSTRACT:  
How to select a limited number of strong ground motion records (SGMR's) is an important challenge for the 
seismic collapse capacity assessment of structures. The goal of this paper is to select, from a general set of 
SGMR's, a small number of subsets such that each can be used for the reliable prediction of the seismic collapse 
capacity of a particular group of structures, i.e. of SDOF systems with a typical behaviour range. The 
multivariate statistical analysis (MSA) and the principle component analysis (PCA) are two key aspects of the 
proposed methodology. The methodology has been validated by analysing a three-storey-reinforced concrete 
structure by means of the proposed subsets, as well as the general set of SGMR's. Also, the proposed subset 
shows good agreement with the general set for the prediction of the IM in the full range of EDP, i.e. maximum 
drift. 
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1. INTRODUCTION 
 
One of the challenges in the non-linear response-history analysis of sophisticated structural models is 
how to select a limited number of SGMR's. The selection of appropriate SGMR's needs to be 
performed with the goal of accurately estimating the response of a structure to a specified ground 
motion intensity, as measured by the spectral acceleration corresponding to the first mode period of 
the structure, Sa(T1). The current code-based method of record selection (e.g. [1]) is based on a 
consideration of the magnitude and distance of the SGMR's, while matching the mean response 
spectrum to the uniform hazard spectrum (UHS) as a target spectrum. Since no single earthquake is 
likely to produce a spectrum as high as the UHS spectrum, the code-based procedure for record 
selection is usually conservatively biased [2-4]. Reduction of this bias and the variance of the resulting 
structural response can be achieved by considering the spectral shape in the record selection [4]. It has 
been demonstrated that spectral shape can be indicated by epsilon, which is defined as a measure of 
the difference between the spectral acceleration of a record and the mean obtained from a ground 
motion prediction equation at a given period [5]. It can therefore be concluded that one method to 
account for the spectral shape effect is through the selection of a set of SGMR's that is specific to the 
structure’s fundamental period and the site hazard characteristics [6]. This selection presents a 
significant challenge when assessing the seismic collapse capacity of a large number of structures or 
when developing a systematic procedure, since it implies the need to assemble specific ground motion 
sets for each structure. An alternative method has been proposed in [6], whereby a general set of 
SGMR's is used to simulate collapse, and the resulting collapse capacity is adjusted in order to take 
into account the spectral shape effects that are not reflected in the selection of the general set. The 

                                                            
* This paper is based on a manuscript which is submitted to the Earthquake Engineering and Structural Dynamic 
journal, 2010. 



major difficulty of this method is that it implies the need to apply a relatively large number of ground 
motion records for the collapse assessment of the structures involved. 
 
The main object of this paper is to find a proper solution for a reduction in the number of SGMR's 
needed for a non-linear response-history analysis. The proposed approach is intended to suggest a few 
subsets from a general set of SGMR's, and to use each subset for the collapse simulation of a specific 
structure group with a typical range of behaviour. The main criterion for selection of each subset is the 
similarity of the subset to the general set for the prediction of the collapse capacity of the structures 
belonging to the relevant structure group. It is important to note that suggestion of subsets is done just 
once, and that the selected subsets can be used a priori for the prediction of the collapse capacity of 
any arbitrarily selected first-mode dominated structure. 
 
 
2. METHODOLOGY 
 
The general SGMR set can be chosen from a catalogue, based on the seismological aspects of a 
considered earthquake scenario [1]. The second set of SGMR's, which is hereafter called a subset, can 
be selected from the general SGMR set, but has a smaller number of SGMR's. The similarity of the 
structural seismic collapse capacity response, based on the two different SGMR sets, can be measured 
by comparing the corresponding probability density functions as described in the following sub-
section. 
 
2.1. Quantification of the similarity of two sets of SGMR’s 
 
Assume that nXXX ,...,, 21  and  mYYY ,...,, 21  are samples from a population which are called, 
respectively, the general set and the subset. Based on Equation (1), two plausible ranges can be 
defined for the population mean by considering a 99% confidence interval ( 01.0=α ).The degree of 
similarity of the two mean values can be quantified by defining two similarity indices. The first index, 

1S , is the probability that the population mean determined from the general set falls into the plausible 
range of the mean which is obtained from the subset. The second similarity index, 2S , is defined as 
the probability that the population mean determined from the subset falls into the plausible range of 
the mean obtained from the general set. The similarity indices are computed, as shown in Figure 1, by 
integrating the related probability density functions over the associated ranges. 
 

  
Figure 1. The definition of the two similarity indices for the univariate case. 

 
The above-described approach for the assessment of the similarity of two sets of SGMR's can be 
extended to apply to an analysis of a set of SDOF systems categorized as a structure group. For this 
purpose, the univariate case, as shown in Figure 1, can be developed into the multivariate case by 



using the multivariate statistical analysis technique.  As an example, the different confidence regions 
are shown schematically, for a given 2=p  dimensional sample, in Figure 2. 
 

  
Figure 2. The different confidence regions for a two dimensional statistical sample. 

 
The orientation of the confidence ellipses is proof of the correlation between the variables, i.e. 
between the structural seismic collapse capacities. So it is a reasonable inference that the p  correlated 
variables must be analyzed jointly, which is a key aspect of multivariate statistical analysis [7]. The 
similarity of the two sets of SGMR's for a structure group of size p can be quantified by extending the 
previously-defined similarity indices to the multivariate case. 
 
2.2. Selection of a near-optimal SGMR subset 
 
The near-optimal subset of SGMR's can be selected from the general SGMR set by maximizing the 
similarity indices. Here, GA, as an efficient optimization search algorithm, is applied [8].  
 
Generally, by increasing the size of the subset, the similarity indices will increase. On the other hand, 
by limiting the minimum value of the similarity indices to 90%, the minimum size of the subset can be 
calculated. For example, for the dataset used in Figure 3, the minimum number of SGMR's in the 
subset that guarantees similarity indices of at least 90% is six. The selected subset and the 
corresponding confidence region are shown in Figure 3.  
 
The size of the subset will increase significantly when the size of structure group is increased. In the 
following section, a statistical solution is proposed in order to solve this problem. 
 

  
Figure 3. The mean values and the corresponding confidence intervals for the general and the subset of SGMR 

for a two dimensional problem. 



2.3. Reduction in the size of the SGMR subset by PC (Principal Components) analysis 
 
The role of PC analysis in the reduction of the subset size is shown in Figure 4. A high correlation 
between the two variables, as seen in Figure 4a, makes it possible to reduce the dimensions of the 
data-set. The transformed data is shown in Figure 4b, which confirms the independence of the PC's. 
The first PC, as seen in Figure 4c, contains 95% of the total variation in the data, so that neglecting the 
second PC is a rational decision. In this case, only three data-points are needed to supply the minimum 
90% of the similarity indices (compared to the six SGMR's, as presented in section 2.2). The similarity 
indices, as well as the probability density functions, are presented, for the general set and for the 
subset of SGMR's, in Figure 4d. The good agreement between the probability density functions, 
associated with the general set and the near-optimal subset, confirms that the use of the first PC results 
in a reduction in the minimum size of the subset from six to three. 
 

  
Figure 4. The Role of PC analysis in reduction of subset size: (a) a high correlation between the two variables 

can be observed, (b) the transformed data confirm the independency of the PC’s, (c) the first PC contains 95% of 
the required information, and (d) there is good agreement between the probability density functions 

corresponding to the general and the subset. 
 
3. SELECTION OF SGMR SUBSETS FROM THE GENERAL SET USED IN THE ATC63 
PROJECT 
 
The proposed methodology was applied to a specific far-field set consisting of 44 SGMR's. This 
general set was used in the Applied Technology Council Project (FEMA 2008) as a procedure to 
validate the provisions for seismic structural design [9]. A seismic collapse capacity database was 
established for 84 SDOF systems with periods ranging between 0.1 and 2.0 sec (T = 0.1, 0.2, 0.3, 0.4, 
0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.25, 1.5, 1.75 and 2.0), six ductility values ( fμ = 2, 4, 6, 8, 10, and 12), and 
a mass proportional critical damping ratio equal to five percent. 
 



As illustrated in Table 3, based on the results of these analyses, all of the 84 SDOF systems were 
grouped into six discrete groups, and eight near-optimal records were found for each group. As an 
interesting result, the optimum pattern of classification is just based on period and consequently the 
selected records are ductility independent. Table 2 shows the characteristics of the SGMR's which are 
proposed for each of the groups described in Table 1. In the next section, the proposed SGMR subset 
will be applied to estimate the seismic collapse capacity of a test structure, in order to investigate the 
efficiency of the proposed methodology. 
 

Table 1. The near-optimal SGMRs for different period ranges. 
Ground 
Motion 
Subset 

Period 
Variance 

Explained by 
the 1st PC 

Variance 
Explained by 

the 2nd PC 
SGMs ID 

1st 
Similarity 

Index 

2nd 
Similarity 

Index 
I 0.1 ~ 0.3 59.6% 26.1% 3 – 8 – 14 – 20 – 21 – 24 – 27 – 28 0.99 0.92 
II 0.3 ~ 0.5 65.4% 23.7% 2 – 4 – 10 – 12 – 20 – 21 – 23 – 30 0.99 0.93 
III 0.5 ~ 0.7 70.9% 18.8% 1 – 4 – 6 – 10 – 12 – 15 – 17 - 23 0.99 0.95 
IV 0.7 ~ 0.9 76.8% 12.3% 1 – 4 – 12 – 22 – 23 – 24 – 25 - 26 0.99 0.95 

V 0.9 ~1.25 64.3% 24.3% 8 – 9 – 12 – 15 – 16 – 22 – 23 - 29 0.99 0.95 
VI 1.25 ~ 2.0 69.8% 19.8% 5 – 7 – 13 – 15 – 19 – 23 – 28 - 31 0.99 0.92 

 
 
4. APPLICATION OF THE PROPOSED SGMR SUBSETS FOR THE ANALYSIS OF A 
MDOF TEST STRUCTURE 
 
The test structure, as shown in Figure 5, is a three-story asymmetric reinforced concrete frame, for 
which a pseudo-dynamic experiment was performed at full scale at the ELSA Laboratory [10]. The 
first mode period of the test structure (0.85 s) implies that subset IV of SGMR's, as described in Table 
1, would be appropriate for the assessment of seismic collapse capacity. In order to evaluate the 
efficiency of the proposed subset records, the CDF of the mean value of the seismic collapse capacity 
based on the general SGMR set, as well as the proposed SGMR subsets (see Table 1), are shown in 
Figure 6a.  
 

  
Figure 5. The elevation (upper left) and plan (upper right) view of the test-structure, showing typical 

reinforcement details (bottom).   
 
 

Table 2. The SGMRs selected from the general set. 



Event, Mw, Year ID Station, Dir Vs_30 
(m/s) 

Campbell 
Distance 

(km) 

Joyner-
Boore Dist. 

(km)  
PGA 
('g)

Northridge, 6.7, 94 1 W Lost Cany, 000 309 12.4 11.4 0.41 

2 W Lost Cany, 270 309 12.4 11.4 0.48 
Hector Mine, 7.1, 99 3 Hector, 000 685 12 10.4 0.27 

Imperial Valley, 6.5, 79  4 Delta, 262 275 22.5 22 0.24 

5 Delta, 352 275 22.5 22 0.35 

6 El Centro Array #11, 140 196 13.5 12.5 0.36 

7 El Centro Array #11, 230 196 13.5 12.5 0.38 
Kobe, Japan, 6.9, 95 8 Nishi-Akashi, 090 609 25.2 7.1 0.50 

9 Shin-Osaka, 000 256 28.5 19.1 0.24
Kocaeli, Turkey, 7.5, 99 10 Duzce, 180 276 15.4 13.6 0.31 

11 Duzce, 270 276 15.4 13.6 0.36 

12 Arcelik , 000 523 13.5 10.6 0.22 
Landers, 7.3, 1992 13 Yermo Fire Station, 270 354 23.8 23.6 0.24 

14 Yermo Fire Station, 360 354 23.8 23.6 0.15

15 Coolwater, LN 271 20 19.7 0.28 

16 Coolwater, TR 271 20 19.7 0.42 
Loma Prieta, 6.9, 89 17 Capitola, 000 289 35.5 8.7 0.53 

18 Capitola, 090 289 35.5 8.7 0.44 

19 Gilroy Array #3, 000 350 12.8 12.2 0.56
Manjil, Iran, 7.4, 90 20 Abbar, T 724 13 12.6 0.50 

Superstition Hills, 6.5, 
87 21 El Centro Imp. Co. Cent, 000  192 18.5 18.2 0.36 

22 Poe Road (temp), 270 208 11.7 11.2 0.45 

23 Poe Road (temp), 360 208 11.7 11.2 0.30 
Cape Mendocino, 7.0, 

92 24 Rio Dell Overpass - FF, 270 312 14.3 7.9 0.39

25 Rio Dell Overpass - FF, 360 312 14.3 7.9 0.55 
Chi-Chi, Taiwan, 7.6, 

99  26 CHY101, E 259 15.5 10 0.35 

27 TCU045, E 705 26.8 26 0.47 

28 TCU045, N 705 26.8 26 0.51 
San Fernando, 6.6, 71  29 LA - Hollywood Stor FF, 090 316 25.9 22.8 0.21 

30 LA - Hollywood Stor FF, 180 316 25.9 22.8 0.17 
Friuli, Italy, 6.5, 76 31 Tolmezzo, 000 425 15.8 15 0.35 

 
The CDF for the SGMR subset IV, as shown in Figure 12a, shows good agreement with the general 
records ( 99.01 =S , 95.02 =S ), whereas the other subsets could not produce a good estimate for the 
mean of the seismic collapse capacity. Table 6 shows the mean values as well as the 99% confidence 
interval of the seismic collapse capacity according to each subset, and the associated similarity indices. 
 
As an interesting result, the median IDA curve based on the general set and on each of the investigated 
SGMR subsets are shown in Figure 12b. Good agreement can be seen between the median IDA curve 
based on the general SGMR's and the median IDA curve obtained from subset IV, although the 
proposed methodology only works with the IM of the IDA curves corresponding to the collapse 
capacity points. 
 



  
Figure 6. Efficiency assessment of the proposed subsets: (a) The CDF of the mean value of the seismic collapse 

capacity, (b) the mean of the full IDA analysis using different proposed subsets and the general set. 
 

Table 3. The accuracy of using the proposed records for the seismic collapse capacity estimation of the test 
structure compared to the other subsets. 

Ground 
Motion 
Class 

Expected Value 
for Seismic 

collapse capacity

99% confidence 
Interval for 

Seismic collapse 
capacity 

1st 
Similarity 

Index 

2nd 
Similarity 

Index 
All Records 0.73 0.61 ~ 0.88 --- --- 

I 0.60 0.40 ~ 0.90 0.99 0.48 
II 0.65 0.47 ~ 1.35 0.99 0.69
III 0.80  0.44 ~ 0.95 0.99 0.67 
IV 0.74 0.55 ~ 1.00 1.00 0.92 
V 0.98  0.67 ~ 1.45 0.98 0.26 
VI 0.89 0.46 ~ 1.71 0.99 0.47 

 
 
5. CONCLUSION 
 
A new approach has been proposed in this paper for the categorization of SDOF systems into groups, 
and then a subset of SGMR's has been proposed for each of them. All of the presented subsets were 
chosen from a general set of SGMR's, and each of them is equivalent to the general set for the 
assessment of the seismic collapse capacity of the associated SDOF group. The grouping features are 
period and ductility. For this purpose, a statistical approach is first used in order to quantify the 
similarity of two sets of SGMR's for the assessment of the collapse capacity of an assumed SDOF 
group. Based on this approach, two similarity indices are defined, and GA is applied in order to 
determine the optimal subset of SGMR for the considered SDOF group. PC analysis is then used to 
explore the best pattern for grouping the SDOF systems. The best pattern for grouping the SDOF 
systems is the one that results in the minimum size of the corresponding SGMR subsets. The results of 
PC analysis have shown that the best selection can be achieved by grouping the SDOF systems, based 
on the period feature. Taking this into account, the range of the studied structural period values 
(0.1~2.0 second) has been divided into six groups, and eight records are proposed for each group (see 
Table 1). The results confirm the efficiency of the presented subsets of SGMR's for collapse capacity 
assessment. Also, the proposed subset shows good agreement with the general set for the prediction of 
the IM in the full range of EDP, i.e. maximum drift. 
 
 



ACKNOWLEDGMENT  
The research conducted by the authors has been funded by the International Institute of Earthquake Engineering 
and Seismology (IIEES) under Award Number 7134. This support is gratefully acknowledged. Any opinions, 
findings, and conclusions or recommendations expressed in this material are those of the authors and do not 
necessarily reflect those of the funding body. 
 
 
REFERENCES 
 
1. ASCE7-05, Minimum Design Loads for Structures and other Structures. American Society of Civil 

Engineers, Reston, VA, 2005. 
2. Bommer J.J, Scott S.G, Sarma S.K. Hazard-consistent earthquake scenarios. Soil Dynamics and 

Earthquake Engineering 2000; 19: 219-231. 
3. Naeim F, Lew M. On the use of design spectrum compatible time histories. Earthquake Spectra 1995; 11: 

111-127. 
4. Baker J.W, Cornell CA. Spectral shape, epsilon and record selection. Earthquake Engineering and 

Structural Dynamics 2006; 35(9):1077–1095. 
5. Baker J.W, Cornell CA. Vector-valued intensity measures incorporating spectral shape for prediction of 

structural response. Journal of Earthquake Engineering 2008; 12(4):534-554. 
6. Haselton C.B, Baker J.W, Liel A.B, Deierlein G.G. Accounting for ground motion spectral shape 

characteristics in structural collapse assessment through an adjustment for epsilon. ASCE Journal of 
Structural Engineering; (in press). 

7. Johnson AR, Wichern WD. Applied multivariate statistical analysis. Prentice Hall: 4th edition, 1998. 
8. Goldberg DE. Genetic Algorithms in search, Optimization, and Machine Learning. Addison-Wesley: 

Reading, MA, 1989. 
9. ATC 63, Recommended Methodology for Quantification of Building System Performance and Response 

Parameters, 90% Draft Report, Applied Technology Council, Redwood City, CA, 2008. 
10. Negro P, Mola E, Molina FJ, Magonette GE. Full-scale testing of a torsionally unbalanced three-storey 

nonseismic RC frame. Proceedings of the 13th World Conference on Earthquake Engineering, Vancouver, 
Canada, 2004; 968. 

 


